scholarly journals Temperature and seed moisture content affect electrical conductivity test in pea seeds

2017 ◽  
Vol 39 (4) ◽  
pp. 410-416 ◽  
Author(s):  
Lara Bernardes da Silva Ferreira ◽  
Nayara Alves Fernandes ◽  
Luan Costa de Aquino ◽  
Anderson Rodrigo da Silva ◽  
Warley Marcos Nascimento ◽  
...  

Abstract: Several factors affect the electrical conductivity test efficiency, with emphasis given to the initial water content and the temperature during imbibition. This study aimed to evaluate the effect of the initial water content of pea seeds and the temperature on the electrical conductivity test efficiency. Six lots of ‘Mikado’ pea were used, which were previously tested for initial characterization. In the first trial, based on the initial value of the samples, the seed moisture content was adjusted to 9, 11, 13 and 15% and then the seeds were submitted to the electrical conductivity test. In the second trial, the water for seed imbibition was kept for 24 hours at 10, 15, 20, 25 and 30 ºC, and after that time the seeds were added and soaked for other 24 hours at the temperatures already mentioned. It was observed that initial seed moisture content and water temperature during imbibition influenced the results of the electrical conductivity test. This test should be carried out with distilled water, previously maintained for 24 hours at 25 °C for temperature stabilization. Then, the seeds with seed moisture content between 11 and 15% should be put to soak at 25 °C, and maintained at this temperature for 24 hours.

2020 ◽  
Vol 48 (2) ◽  
pp. 201-207
Author(s):  
Y.K. Fan ◽  
M. Liu ◽  
J.X. Hu ◽  
M.Y. Ji ◽  
Q.Y. Lan

The present study examined the effect of temperature (15, 20, 25, 30 and 20/30°C) on germination and the storage behaviour of freshly harvested mature seeds of Calamus palustris var. cochinchinensis. Seed desiccation tolerance and the effects of storage temperature (4 and 15°C), perlite water content (120, 180 and 240%) and seed moisture content (27.8, 38.2 and 49.2%) on viability were observed. Seeds had a higher germination at 25°C (88.3%) than at the other tested temperatures. Germination decreased as the seed moisture content decreased during desiccation. The germination of seeds stored at 15°C was higher than that of seeds stored at 4°C. Germination of seeds stored at 15 and 4°C was <65% and with extension of storage time, the germination decreased, indicating that neither temperature can be used for long-term conservation. For short-term storage, the seeds can be stored at 15°C with perlite with 180% water content in plastic bottles or at 15°C with 49.2% moisture content sealed inside aluminum foil bags.


2018 ◽  
Vol 38 (2) ◽  
pp. 167
Author(s):  
Lince Mukkun ◽  
Herianus J.D. Lalel ◽  
Yuliana Tandirubak

Maize is one of the important staple foods for people in Timor, East Nusa Tenggara Province, Indonesia. Subsistent farmers store the maize for their own consumption until the next harvest season, for seed and feed.  However, high initial water content of the kernel due to improper drying prior storage initiate serious damage and losses during the maize storage.  High water content promotes the growth of fungi and insects, and increase respiration rate, resulting in rapid deterioration of maize. The purpose of this study was to determine the initial moisture content that might minimize damage and losses of maize in the farmers’ storage, and to study the effects of some plant materials that are used to smoke corns before storage. The experiment was initiated by sun-drying the harvested corncobs for 0, 2, 4, 6, 8, and 10 days (6 hours a day). This experiment was designed using Completely Randomized Design with 6 treatments and 3 replications. Dried corncobs were stored in the farmer’s storage for 4 months. The effects of maize kernels’ initial water content on the development of water content in kernels; the percentage of damaged kernels; and the species of pathogen and insects were investigated during storage with 2-week intervals.  The results demonstrated that drying the corncobs prior storage for 10 days, resulting in 12.96% of water content, significantly decreased the percentage of seed damage to 6.5%, as compared to without drying process which resulted  in 63%.  Aspergillus flavus, Fusarium sp., and Penicillium sp were found to be the main pathogen during storage.  There are no insect pests found during the storage. 


2018 ◽  
Vol 21 (1) ◽  
pp. 131-141
Author(s):  
MR Ali ◽  
MM Rahman ◽  
MA Wadud ◽  
AHF Fahim ◽  
MS Nahar

Soybean (Glycine max) seed loses its viability in the storage which causes shortage in supply of quality seed and consequently hinders the expansion of soybean cultivation in Bangladesh.Losses of seed viability of soybean (Glycine max) in traditional storage is very common in the tropical environment. An experiment was conducted at the Seed Laboratory, Regional Agricultural Research Station, Bangladesh Agricultural Research Institute (BARI), Jamalpur in 2011 and 2012 to find out the effect of seed moisture content and types of storage container on soybean seed germination and seedling vigour. In 2011, soybean seed having 94% initial germination was stored at 8, 10 and 12% moisture levels but in 2012 seeds having 96% initial germination was stored at 6, 8, 10 and 12% initial moisture levels in four different types of storage containers viz., polythene bag, plastic pot, tin can and glass jar. weredays after storage ().The experiment was arranged in a factorial completely randomized design with three replications. In 2011, high germination of soybean seed (77-85%) was retained at 200 DAS for those stored at 8% initial seed moisture content (SMC) in any of the containers. Germination index and seedling dry matter decreased with increased initial seed moisture content irrespective of storage containers used. Tin preserved higher seed moisture contents of 9.93, 11.71 and 14.15% for seed stored at 8%, 10% and 12% initial seed moisture content, respectively. In 2012, 80-94% seed germination was retained at 200 DAS for those stored at 6% initial SMC in any of the containers. The germination declined to a range between 75.0 and 91.3% within 200 DAS at 8% initial SMC while those stored at 12% SMC showed rapid germination loss and the value showed down to between 9.3 and 22.0%. Vigour index and seedling dry matter decreased with increased initial seed moisture content irrespective of storage containers used. Tin also Seeds stored in tin container showed the higher final seed moisture contents irrespective of initial seed moisture content. Bangladesh Agron. J. 2018, 21(1): 131-141


1989 ◽  
Vol 89 (3) ◽  
pp. 805-810 ◽  
Author(s):  
William D. Wolk ◽  
Patrick F. Dillon ◽  
Laura F. Copeland ◽  
David R. Dilley

2015 ◽  
Vol 37 (4) ◽  
pp. 249-253 ◽  
Author(s):  
Arthur Batoqui Costa e Silva ◽  
Ícaro Monteiro Galvão ◽  
Rafael Marani Barbosa ◽  
Clíssia Barboza da Silva ◽  
Roberval Daiton Vieira

The controlled deterioration test is efficient for seed vigor evaluation of several species. However, the procedures conditions are incipient, especially in respect to tropical forages such as sunn hemp, which still does not have a standardized procedure. The objective of this research was to adjust the procedures for a controlled deterioration test in Crotalaria juncea L. seeds. For this, five commercial seed lots were evaluated for water content and initial physiological potential (germination test, first germination count, germination speed index, saturated salt accelerated aging with NaCl, electrical conductivity and seedling field emergence). For controlled deterioration test, the initial seed moisture content was adjusted to 18, 21 and 24% and, subsequently, the samples were exposed at 45 °C during 24 hours. Seed germination test was conducted with the use of sand as substrate. Evaluations were performed on the fourth, fifth and sixth day after sowing. The controlled deterioration test for sunn hemp seeds should be performed with 24% seed moisture content, at 45 °C during 24 hours, and the test evaluation on the fourth day after sowing.


2021 ◽  
Vol 7 (1) ◽  
pp. 39-49
Author(s):  
Hary Kurniawan ◽  
Sukmawaty Sukmawaty ◽  
Ansar Ansar ◽  
Kurniawan Yuniarto ◽  
Murad Murad ◽  
...  

This study aims to determine the drying rate constant of coconut chips using an oven. Coconut chips drying is carried out at drying temperatures of 50 ° C, 60 ° C and 70 ° C. Drying coconut chips has been conducted at an initial water content of 40-50% wb until it reached ± 10% wb. The change of moisture content was measured every 15 minutes, and the measurement of the water content was determined by the thermogravimetric method. Newton's model was used in determining the observation drying rate constant. Furthermore, the observation drying rate constant was applied to predict the drying rate constant as a function of temperature using the Arrhenius equation. The results showed that the predicted drying rate constants ranged from 0.0090 - 0.0130 minute-1. 


2020 ◽  
Vol 44 (4) ◽  
pp. 631-640
Author(s):  
MR Ali ◽  
MM Rahman ◽  
M Asaduzzaman ◽  
MAH Khan ◽  
J Rahman

The experiment was conducted at the Seed Laboratory, Regional Agricultural Research Station, Bangladesh Agricultural Research Institute, Jamalpur in 2013 to study the effect of seed moisture content and storage containers on seed quality of soybean genotypes. Three genotypes of soybean (AGS 191, ASET 93 and Shohag), four initial seed moisture content (6, 8, 10 and 12%) and two types of storage containers (polythene bag and glass jar) were included in the experimental treatment. Seeds of soybean genotypes was stored at ambient condition were temperature ranged from 15.97 to 29.37 0C, relative humidity ranged from 75.21 to 86.23% and rainfall ranged from 0.00 to 425mm during the whole storage period. Seed moisture content (%), germination (%) and vigour index were recorded at 50, 100, 150 and 200 days after storage (DAS). Result showed that final seed moisture content increased with the increase of initial seed moisture content. Genotype AGS 191 showed the highest germination (%) and vigour index. Seeds stored in polythene bag or glass jar showed similar performance for germination (%) and vigour index. Highest seed moisture content significantly reduced the germination and vigour index errespective of containers. The results indicate that soybean seed can be stored safely for at least 200 days maintaining >80% germination and high vigour when stored in polythene bag or glass jar with 6-8% initial moisture content at ambient room temperature and relative humidity. Bangladesh J. Agril. Res. 44(4): 631-640, December 2019


2013 ◽  
Vol 35 (3) ◽  
pp. 323-330 ◽  
Author(s):  
Suelen Santos Rego ◽  
Antonio Carlos Nogueira ◽  
Antonio Carlos de Souza Medeiros ◽  
Carmen Lúcia de Oliveira Petkowicz ◽  
Álvaro Figueredo dos Santos

The present work aimed to develop studies on the tolerance to dehydration of Blepharocalyx salicifolius and Casearia decandra seeds. In order to verify the effect of drying on the seeds, they were placed in desiccators containing a saline solution saturated with potassium acetate (23.5% RH) at temperature of 15 °C. After obtaining the desired moisture contents, the seeds were submitted to the germination, vigor, tetrazolium and electrical conductivity tests. It can be concluded that under slow drying conditions, the seeds of B. salicifolius and C. decandra were sensitive to moisture reduction of 29% to 25%, and lost viability at around 14% and 8% of moisture content, respectively. The physiological changes occurring during seed drying showed there was a decrease in viability and vigor and an increase in electrical conductivity values starting at 25% seed moisture content.


Author(s):  
Paulo C. Coradi ◽  
Carlos H. P. Fernandes ◽  
Jean C. Helmich

ABSTRACT The aim of this study was to evaluate the influence of the initial moisture content of soybeans and the drying air temperatures on drying kinetics and grain quality, and find the best mathematical model that fit the experimental data of drying, effective diffusivity and isosteric heat of desorption. The experimental design was completely randomized (CRD), with a factorial scheme (4 x 2), four drying temperatures (75, 90, 105 and 120 ºC) and two initial moisture contents (25 and 19% d.b.), with three replicates. The initial moisture content of the product interferes with the drying time. The model of Wang and Singh proved to be more suitable to describe the drying of soybeans to temperature ranges of the drying air of 75, 90, 105 and 120 °C and initial moisture contents of 19 and 25% (d.b.). The effective diffusivity obtained from the drying of soybeans was higher (2.5 x 10-11 m2 s-1) for a temperature of 120 °C and water content of 25% (d.b.). Drying of soybeans at higher temperatures (above 105 °C) and higher initial water content (25% d.b.) also increases the amount of energy (3894.57 kJ kg-1), i.e., the isosteric heat of desorption necessary to perform the process. Drying air temperature and different initial moisture contents affected the quality of soybean along the drying time (electrical conductivity of 540.35 µS cm-1g-1); however, not affect the final yield of the oil extracted from soybean grains (15.69%).


Sign in / Sign up

Export Citation Format

Share Document