The Fine Structure of the So-called Crystalloid Body of the Human Retina as Observed with the Electron Microscope*

Author(s):  
K. Hama

The lateral line organs of the sea eel consist of canal and pit organs which are different in function. The former is a low frequency vibration detector whereas the latter functions as an ion receptor as well as a mechano receptor.The fine structure of the sensory epithelia of both organs were studied by means of ordinary transmission electron microscope, high voltage electron microscope and of surface scanning electron microscope.The sensory cells of the canal organ are polarized in front-caudal direction and those of the pit organ are polarized in dorso-ventral direction. The sensory epithelia of both organs have thinner surface coats compared to the surrounding ordinary epithelial cells, which have very thick fuzzy coatings on the apical surface.


Author(s):  
Roberta M. Bruck

An unusual structure in the cochlea is the spiral limbus; this periosteal tissue consists of stellate fibroblasts and collagenous fibers embedded in a translucent ground substance. The collagenous fibers are arranged in vertical columns (the auditory teeth of Haschke). Between the auditory teeth are interdental furrows in which the interdental cells are situated. These epithelial cells supposedly secrete the tectorial membrane.The fine structure of interdental cells in the rat was reported by Iurato (1962). Since the mouse appears to be different, a description of the fine structure of mouse interdental cells' is presented. Young adult C57BL/6J mice were perfused intervascularly with 1% paraformaldehyde/ 1.25% glutaraldehyde in .1M phosphate buffer (pH7.2-7.4). Intact cochlea were decalcified in .1M EDTA by the method of Baird (1967), postosmicated, dehydrated, and embedded in Araldite. Thin sections stained with uranyl acetate and lead citrate were examined in a Phillips EM-200 electron microscope.


Author(s):  
C.V.L. Powell

The overall fine structure of the eye in Placopecten is similar to that of other scallops. The optic tentacle consists of an outer columnar epithelium which is modified into a pigmented iris and a cornea (Fig. 1). This capsule encloses the cellular lens, retina, reflecting argentea and the pigmented tapetum. The retina is divided into two parts (Fig. 2). The distal retina functions in the detection of movement and the proximal retina monitors environmental light intensity. The purpose of the present study is to describe the ultrastructure of the retina as a preliminary observation on eye development. This is also the first known presentation of scanning electron microscope studies of the eye of the scallop.


Author(s):  
T. Guha ◽  
A. Q. Siddiqui ◽  
P. F. Prentis

The Primary Spermatocytes represent a stage in spermatogenesis when the first meiotic cell division occurs. They are derived from Spermatogonium or Stem cell through mitotic division. At the zygotene phase of meiotic prophase the Synaptonemal complex appears in these cells in the space between the paired homologous chromosomes. Spermatogenesis and sperm structure in fish have been studied at the electron microscope level in a few species? However, no work has yet been reported on ultrastructure of tilapia, O. niloticus, spermatozoa and spermatogenetic process. In this short communication we are reporting the Ultrastructure of Primary Spermatocytes in tilapia, O. niloticus, and the fine structure of synaptonemal complexes seen in the spermatocyte nuclei.


Author(s):  
D. E. Johnson ◽  
S. Csillag

Recently, the applications area of analytical electron microscopy has been extended to include the study of Extended Energy Loss Fine Structure (EXELFS). Modulations past an ionization edge in the energy loss spectrum (EXELFS), contain atomic fine structure information similar to Extended X-ray Absorbtion Fine Structure (EXAFS). At low momentum transfer the main contribution to these modulations comes from interference effects between the outgoing excited inner shell electron waves and electron waves backscattered from the surrounding atoms. The ability to obtain atomic fine structure information (such as interatomic distances) combined with the spatial resolution of an electron microscope is unique and makes EXELFS an important microanalytical technique.


1964 ◽  
Vol 23 (1) ◽  
pp. 63-78 ◽  
Author(s):  
James R. Coleman ◽  
Montrose J. Moses

The indium trichloride method of Watson and Aldridge (38) for staining nucleic acids for electron microscopy was employed to study the relationship of DNA to the structure of the synaptinemal complex in meiotic prophase chromosomes of the domestic rooster. The selectivity of the method was demonstrated in untreated and DNase-digested testis material by comparing the distribution of indium staining in the electron microscope to Feulgen staining and ultraviolet absorption in thicker sections seen with the light microscope. Following staining by indium, DNA was found mainly in the microfibril component of the synaptinemal complex. When DNA was known to have been removed from aldehyde-fixed material by digestion with DNase, indium stainability was also lost. However, staining of the digested material with non-selective heavy metal techniques demonstrated the presence of material other than DNA in the microfibrils and showed that little alteration in appearance of the chromosome resulted from DNA removal. The two dense lateral axial elements of the synaptinemal complex, but not the central one to any extent, also contained DNA, together with non-DNA material.


1965 ◽  
Vol 25 (2) ◽  
pp. 141-157 ◽  
Author(s):  
David S. Maxwell ◽  
Lawrence Kruger

Normal and reactive astrocytes in the cerebral cortex of the rat have been studied with the electron microscope following focal alpha particle irradiation. The presence of glycogen and approximately 60-A fibrils identify astrocyte cytoplasm in formalin-perfused tissue. The glycogen particles facilitate the identification of small processes and subpial and perivascular end-feet. Both protoplasmic and fibrous astrocytes contain cytoplasmic fibrils and should be distinguished on the basis of the configuration of their processes and their distribution. Acutely reactive astrocytes are characterized by a marked increase in the number of glycogen granules and mitochondria from the first day after irradiation. These cells later hypertrophy and accumulate lipid bodies and increased numbers of cytoplasmic fibrils. The glial "scar" consists of a greatly expanded volume of astrocyte cytoplasm filled with fibrils and displays no signs of astrocyte death, reversion to primitive forms, or extensive multiplication.


1959 ◽  
Vol s3-100 (49) ◽  
pp. 13-15
Author(s):  
K. DEUTSCH ◽  
M. M. SWANN

The fine structure of a species of small free-living amoeba, Hartmanella astronyxis, has been investigated. The mitochondria resemble those of other species of amoeba. Structureless bodies of about the same size as mitochondria are sometimes found in association with them. Double membranes are common in the cytoplasm, and may show granules along their outer borders. The nuclear membrane is a double-layered structure, with a honeycomb structure evident in tangential sections. The cell membrane is also double-layered, or occasionally multi-layered.


1964 ◽  
Vol s3-105 (72) ◽  
pp. 385-389
Author(s):  
K. E. DIXON ◽  
E. H. MERCER

Observations with the electron microscope have shown that 4 major layers can be distinguished in the cyst wall: (a) an outer tanned-protein layer, consisting of a meshwork of irregular bodies made up of cigar-shaped particles; (b) a predominantly mucopolysaccharide, finely-fibrous layer, closely adherent to the tanned layer; (c) an inner, mainly mucopolysaccharide layer, which can be resolved into two layers differing in fine texture; (d) a dense, compact layer, composed of numerous protein sheets stabilized by disulphide linkages. This layer is formed from tightly wound scrolls, developed in intracellular vacuoles, which are unrolled at the surface of the animal after secretion.


Sign in / Sign up

Export Citation Format

Share Document