scholarly journals The Proline-Rich Family Protein EXTENSIN33 Is Required for Etiolated Arabidopsis thaliana Hypocotyl Growth

2020 ◽  
Vol 61 (6) ◽  
pp. 1191-1203 ◽  
Author(s):  
Malgorzata Zdanio ◽  
Agnieszka Karolina Boron ◽  
Daria Balcerowicz ◽  
Sébastjen Schoenaers ◽  
Marios Nektarios Markakis ◽  
...  

Abstract Growth of etiolated Arabidopsis hypocotyls is biphasic. During the first phase, cells elongate slowly and synchronously. At 48 h after imbibition, cells at the hypocotyl base accelerate their growth. Subsequently, this rapid elongation propagates through the hypocotyl from base to top. It is largely unclear what regulates the switch from slow to fast elongation. Reverse genetics-based screening for hypocotyl phenotypes identified three independent mutant lines of At1g70990, a short extensin (EXT) family protein that we named EXT33, with shorter etiolated hypocotyls during the slow elongation phase. However, at 72 h after imbibition, these dark-grown mutant hypocotyls start to elongate faster than the wild type (WT). As a result, fully mature 8-day-old dark-grown hypocotyls were significantly longer than WTs. Mutant roots showed no growth phenotype. In line with these results, analysis of native promoter-driven transcriptional fusion lines revealed that, in dark-grown hypocotyls, expression occurred in the epidermis and cortex and that it was strongest in the growing part. Confocal and spinning disk microscopy on C-terminal protein-GFP fusion lines localized the EXT33-protein to the ER and cell wall. Fourier-transform infrared microspectroscopy identified subtle changes in cell wall composition between WT and the mutant, reflecting altered cell wall biomechanics measured by constant load extensometry. Our results indicate that the EXT33 short EXT family protein is required during the first phase of dark-grown hypocotyl elongation and that it regulates the moment and extent of the growth acceleration by modulating cell wall extensibility.

Author(s):  
Eliza Louback ◽  
Diego Silva Batista ◽  
Tiago Augusto Rodrigues Pereira ◽  
Talita Cristina Mamedes-Rodrigues ◽  
Tatiane Dulcineia Silva ◽  
...  

1996 ◽  
Vol 121 (3) ◽  
pp. 380-383 ◽  
Author(s):  
E.V. Wann

Tissue firmness of ripe tomatoes is controlled by cell wall integrity of the fruit tissue and by the enzymatic softening that normally occurs during ripening. This study was conducted to determine the physical characteristics of cells and tissues of mature green (MG) and ripe fruit that might account for differences in firmness between `Rutgers' (normal), `Flora-Dade' (Firm), and two mutant lines called high-pigment (T4065 hp) and dark-green (T4099 dg), both of which possess extra firm fruit. Fruit samples were tested for resistance to a force applied to whole fruit and to sections of the pericarp tissue and by stress-relaxation analysis. Determinations were also made of cell density and cell wall content within the pericarp tissue. Fruit of mutant lines had firmer tissue than either `Rutgers' or `Flora-Dade' at MG or ripe. Whole fruit compression measurements showed that T4099 dg was firmer than T4065 hp or `Rutgers' at MG and firmer than `Flora-Dade' and `Rutgers' when ripe. Whole fruit of `Flora-Dade' were significantly firmer than `Rutgers' at MG and ripe. Firmness measured by compressive strength also showed that mutant lines had firmer pericarp tissue than the wild types at both MG and ripe stages. Stress-relaxation analysis showed that MG fruit of T4099 dg had greater tissue elasticity than `Rutgers' or `Flora-Dade'. Ripe fruit of both mutant lines had more tissue elasticity than wild types. There were no apparent differences among the genotypes due to tissue relaxation. From these analyses, tissue elasticity appears to be a significant parameter in determining tissue firmness in the tomato genotypes used in this study. Firmness and textural quality of ripe tomatoes appeared to be dependent on elasticity of the pericarp tissue and on the level of enzymatic softening during ripening.


2018 ◽  
Vol 95 (5) ◽  
pp. 796-811 ◽  
Author(s):  
Yuri Takeda ◽  
Yuki Tobimatsu ◽  
Steven D. Karlen ◽  
Taichi Koshiba ◽  
Shiro Suzuki ◽  
...  

Author(s):  
Margalida Roig‐Oliver ◽  
Catherine Rayon ◽  
Romain Roulard ◽  
François Fournet ◽  
Josefina Bota ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Lea Atanasova ◽  
Sabine Gruber ◽  
Alexander Lichius ◽  
Theresa Radebner ◽  
Leoni Abendstein ◽  
...  

1999 ◽  
Vol 26 (1) ◽  
pp. 29 ◽  
Author(s):  
P. Jackson ◽  
S. Paulo ◽  
C. P. P. Ricardo ◽  
M. Brownleader ◽  
P. O. Freire

The spatial distribution of the major basic (B2; pI 8.8) peroxidase of the intercellular fluid has an inverse relation with extension rate in etiolated hypocotyls of Lupinus albus L., suggesting its possible role in the control of cell expansion. White-light irradiation of etiolated hypocotyls resulted in growth inhibition and the induction of B2 and acidic (A2, pI 4.7–5.2) isoperoxidases (EC 1.1.11.7) to higher physiological activities. However, only the activities of the B2 isoperoxidases underwent quantitative changes in both space and time which suggested their role in growth-retardation. We have purified the B2 and A2 (pI 5.2) peroxidases to apparent electrophoretic homogeneity. To corroborate evidence obtained elsewhere that growth cessation coincides with cell wall structural changes and cell wall rigidification, we have shown that the B2 peroxidase, and not A2 peroxidase, cross-links tomato extensin in vitro. The B2 peroxidase may therefore catalyse the developmentally and light regulated formation of a covalently cross-linked cell wall extensin matrix in lupin hypocotyls. The cell wall would be more rigid or more recalcitrant to wall-loosening and subsequently contribute to the control of cell expansion.


2001 ◽  
Vol 26 (6) ◽  
pp. 543-558 ◽  
Author(s):  
Brian R. Macintosh ◽  
Shirley N. Bryan ◽  
Peter Rishaug ◽  
Stephen R. Norris

The purpose of this study was to assess the accuracy of the new basket-loaded Wingate ergometer introduced by Monark (Model 834E). Velocity was measured directly from the pedal switch while tension was measured with transducers on each end of the brake lacing. Moment of inertia of the flywheel was determined and accounted for in the calculation of power. Constant load tests (39.24 to 98.1 N), were done at pedaling speeds from 80 to 140 r•min−1 (flywheel angular velocity = 30-50 rad•s−1). The load transmitted to the lacing at the front and back of the flywheel was 95.5 ± 0.8% (mean ± SEM) and 6.71 ± 0.8%, respectively, of the load in the basket. Thus, the resultant tension (front minus back) was on average 88.8 ± 0.57% of the applied load. The velocity recorded by the Monark Wingate Ergometer computer program (MWECP) was the same (100.4 ± 1.56%) as that determined from the pedal switch directly. Five male mountain bikers performed a 30-s all-out test. Peak power calculated by MWECP (1181 ± 55W) was always higher (p < .01) than that calculated from direct measures of tension and velocity (1102 ± 66W), when not taking into account the moment of inertia. These experiments suggest that the basket-loaded Monark Wingate ergometer does not provide a correct calculation of power because of incomplete load transmission to the flywheel. Key words: power, anaerobic power, moment of inertia, cycle ergometer


2005 ◽  
Vol 187 (11) ◽  
pp. 3643-3649 ◽  
Author(s):  
Tsuyoshi Uehara ◽  
Kyoko Suefuji ◽  
Noelia Valbuena ◽  
Brian Meehan ◽  
Michael Donegan ◽  
...  

ABSTRACT Escherichia coli breaks down over 60% of the murein of its side wall and reuses the component amino acids to synthesize about 25% of the cell wall for the next generation. The amino sugars of the murein are also efficiently recycled. Here we show that the 1,6-anhydro-N-acetylmuramic acid (anhMurNAc) is returned to the biosynthetic pathway by conversion to N-acetylglucosamine-phosphate (GlcNAc-P). The sugar is first phosphorylated by anhydro- N -acetylmuramic acid kinase (AnmK), yielding MurNAc-P, and this is followed by action of an etherase which cleaves the bond between d-lactic acid and the N-acetylglucosamine moiety of MurNAc-P, yielding GlcNAc-P. The kinase gene has been identified by a reverse genetics method. The enzyme was overexpressed, purified, and characterized. The cell extract of an anmK deletion mutant totally lacked activity on anhMurNAc. Surprisingly, in the anmK mutant, anhMurNAc did not accumulate in the cytoplasm but instead was found in the medium, indicating that there was rapid efflux of free anhMurNAc.


Sign in / Sign up

Export Citation Format

Share Document