scholarly journals Changes in Membrane Lipid Composition and Function Accompanying Chilling Injury in Bell Peppers

2017 ◽  
Vol 59 (1) ◽  
pp. 167-178 ◽  
Author(s):  
Ximan Kong ◽  
Baodong Wei ◽  
Zhu Gao ◽  
Ying Zhou ◽  
Fei Shi ◽  
...  
2018 ◽  
Vol 20 (43) ◽  
pp. 27294-27304 ◽  
Author(s):  
Rodrigo Aguayo-Ortiz ◽  
John E. Straub ◽  
Laura Dominguez

Insight into the effect of bilayer lipid composition on the GS structural ensemble and function using multiscale computational modeling approaches.


FEBS Letters ◽  
2018 ◽  
Vol 593 (1) ◽  
pp. 88-96 ◽  
Author(s):  
Maria V. Selvadurai ◽  
Rose J. Brazilek ◽  
Mitchell J. Moon ◽  
Jean‐Yves Rinckel ◽  
Anita Eckly ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 919
Author(s):  
Manuel Torres ◽  
Sebastià Parets ◽  
Javier Fernández-Díaz ◽  
Roberto Beteta-Göbel ◽  
Raquel Rodríguez-Lorca ◽  
...  

Membranes are mainly composed of a lipid bilayer and proteins, constituting a checkpoint for the entry and passage of signals and other molecules. Their composition can be modulated by diet, pathophysiological processes, and nutritional/pharmaceutical interventions. In addition to their use as an energy source, lipids have important structural and functional roles, e.g., fatty acyl moieties in phospholipids have distinct impacts on human health depending on their saturation, carbon length, and isometry. These and other membrane lipids have quite specific effects on the lipid bilayer structure, which regulates the interaction with signaling proteins. Alterations to lipids have been associated with important diseases, and, consequently, normalization of these alterations or regulatory interventions that control membrane lipid composition have therapeutic potential. This approach, termed membrane lipid therapy or membrane lipid replacement, has emerged as a novel technology platform for nutraceutical interventions and drug discovery. Several clinical trials and therapeutic products have validated this technology based on the understanding of membrane structure and function. The present review analyzes the molecular basis of this innovative approach, describing how membrane lipid composition and structure affects protein-lipid interactions, cell signaling, disease, and therapy (e.g., fatigue and cardiovascular, neurodegenerative, tumor, infectious diseases).


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Seung-Min Lee ◽  
Seol Hee Lee ◽  
Youngae Jung ◽  
Younglang Lee ◽  
Jong Hyun Yoon ◽  
...  

Abstract Sarcopenia is characterized by decreased skeletal muscle mass and function with age. Aged muscles have altered lipid compositions; however, the role and regulation of lipids are unknown. Here we report that FABP3 is upregulated in aged skeletal muscles, disrupting homeostasis via lipid remodeling. Lipidomic analyses reveal that FABP3 overexpression in young muscles alters the membrane lipid composition to that of aged muscle by decreasing polyunsaturated phospholipid acyl chains, while increasing sphingomyelin and lysophosphatidylcholine. FABP3-dependent membrane lipid remodeling causes ER stress via the PERK-eIF2α pathway and inhibits protein synthesis, limiting muscle recovery after immobilization. FABP3 knockdown induces a young-like lipid composition in aged muscles, reduces ER stress, and improves protein synthesis and muscle recovery. Further, FABP3 reduces membrane fluidity and knockdown increases fluidity in vitro, potentially causing ER stress. Therefore, FABP3 drives membrane lipid composition-mediated ER stress to regulate muscle homeostasis during aging and is a valuable target for sarcopenia.


2019 ◽  
Vol 20 (9) ◽  
pp. 2167 ◽  
Author(s):  
Doralicia Casares ◽  
Pablo V. Escribá ◽  
Catalina Ana Rosselló

Biological membranes are key elements for the maintenance of cell architecture and physiology. Beyond a pure barrier separating the inner space of the cell from the outer, the plasma membrane is a scaffold and player in cell-to-cell communication and the initiation of intracellular signals among other functions. Critical to this function is the plasma membrane compartmentalization in lipid microdomains that control the localization and productive interactions of proteins involved in cell signal propagation. In addition, cells are divided into compartments limited by other membranes whose integrity and homeostasis are finely controlled, and which determine the identity and function of the different organelles. Here, we review current knowledge on membrane lipid composition in the plasma membrane and endomembrane compartments, emphasizing its role in sustaining organelle structure and function. The correct composition and structure of cell membranes define key pathophysiological aspects of cells. Therefore, we explore the therapeutic potential of manipulating membrane lipid composition with approaches like membrane lipid therapy, aiming to normalize cell functions through the modification of membrane lipid bilayers.


2020 ◽  
Vol 266 ◽  
pp. 109308
Author(s):  
Mingjie Ma ◽  
Zhiqiang Zhu ◽  
Shunchang Cheng ◽  
Qian Zhou ◽  
Xin Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document