Melting and Melt Segregation in the Mantle Wedge above a Subduction Zone: Evidence from the Chromite-bearing Peridotites of the Miyamori Ophiolite Complex, Northeastern Japan

1994 ◽  
Vol 35 (3) ◽  
pp. 647-678 ◽  
Author(s):  
K. OZAWA
2019 ◽  
Vol 55 (1) ◽  
pp. 185
Author(s):  
Maria Kokkaliari ◽  
Karen St. Seymour ◽  
Stylianos F. Tombros ◽  
Eleni Koutsopoulou

This paper aims to study the chromitites, as well as their host rocks (meta-peridotites, meta-dunites and serpentinites) of the ophiolite complex of Mount Tsiknias, in Tinos Island. Recognition of their mineralogy and their textural features was carried out through detailed petrographic study. The mineral chemistry analysis contributed to the evaluation of the analyzed chromites, the chemical composition of which provides important information about the petrogenetic evolution of the chromitite ores. The chromites were in equilibrium with boninite melts derived from Supra-Subduction Zone, e.g., a depleted mantle wedge. In the binary classification diagram for spinels, the Tinos samples extend in the fields of Mg-chromite and chromite sensu strictu. In the TiO2 vs Al2O3 diagram, the chromites plot in the field of Supra-Subduction Zone (SSZ) peridotites and partly overlap the field of chromites in Back-Arc Basalts (BABB), however the same samples plot in the field of chromite of boninites. In the Al2O3 vs Cr2O3 diagram both groups of Tinos chromites plot in the field/extremity of “mantle chromites”.


Author(s):  
Brian O’Driscoll ◽  
Julien Leuthold ◽  
Davide Lenaz ◽  
Henrik Skogby ◽  
James M D Day ◽  
...  

Abstract Samples of peridotites and pyroxenites from the mantle and lower crustal sections of the Leka Ophiolite Complex (LOC; Norway) are examined to investigate the effects of melt-rock reaction and oxygen fugacity variations in the sub-arc oceanic lithosphere. The LOC is considered to represent supra-subduction zone (SSZ) oceanic lithosphere, but also preserves evidence of pre-SSZ magmatic processes. Here we combine field and microstructural observations with mineral chemical and structural analyses of different minerals from the major lithologies of the LOC. Wehrlite and websterite bodies in both the mantle and lower crust contain clinopyroxene likely formed at a pre-SSZ stage, characterised by high Al, high Cr, low Mg crystal cores. These clinopyroxenes also exhibit low Al, low Cr, high Mg outer rims and intracrystalline dissolution surfaces, indicative of reactive melt percolation during intrusion and disruption of these lithologies by later, SSZ-related, dunite-forming magmas. Chromian-spinel compositional variations correlate with lithology; dunite-chromitite Cr-spinels are characterised by relatively uniform and high TiO2 and Al2O3, indicating formation by melt-rock reaction associated with SSZ processes. Harzburgite Cr-spinel compositions are more variable but preserve a relatively high Al2O3, low TiO2 endmember that may reflect crystallisation in a pre-SSZ oceanic spreading centre setting. An important finding of this study is that the LOC potentially preserves the petrological signature of a transition between oceanic spreading centre processes and subsequent supra-subduction zone magmatism. Single crystal Cr-spinel Fe3+/ΣFe ratios calculated on the basis of stoichiometry (from electron microprobe [EPMA] and crystal structural [X-ray diffraction; XRD] measurements) correlate variably with those calculated by point-source (single crystal) Mössbauer spectroscopy. Average sample EPMA Fe3+/ΣFe ratios overestimate or underestimate the Mössbauer-derived values for harzburgites, and always overestimate the Mössbauer Fe3+/ΣFe ratios for dunites and chromitites. The highest Fe3+/ΣFe ratios, irrespective of method of measurement, are therefore generally associated with dunites and chromitites, and yield calculated log(fO2)FMQ values of up to ~+1.8. While this lends support to the formation of the dunites and chromitites during SSZ-related melt percolation in the lower part of the LOC, it also suggests that these melts were not highly oxidised, compared to typical arc basalts (fO2FMQ of >+2). This may in turn reflect the early (forearc) stage of subduction zone activity preserved by the LOC and implies that some of the arc tholeiitic and boninitic lava compositions preserved in the upper portion of the ophiolite are not genetically related to the mantle and lower crustal rocks, against which they exhibit tectonic contacts. Our new data also have implications for the use of ophiolite chromitites as recorders of mantle oxidation state through time; a global comparison suggests that the Fe3+/ΣFe signatures of ophiolite chromitites are likely to have more to do with local environmental petrogenetic conditions in sub-arc systems than large length-scale mantle chemical evolution.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Takayoshi Nagaya ◽  
Andrew M. Walker ◽  
James Wookey ◽  
Simon R. Wallis ◽  
Kazuhiko Ishii ◽  
...  
Keyword(s):  

Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 565 ◽  
Author(s):  
Véronique Le Roux ◽  
Yan Liang

The peridotite section of supra-subduction zone ophiolites is often crosscut by pyroxenite veins, reflecting the variety of melts that percolate through the mantle wedge, react, and eventually crystallize in the shallow lithospheric mantle. Understanding the nature of parental melts and the timing of formation of these pyroxenites provides unique constraints on melt infiltration processes that may occur in active subduction zones. This study deciphers the processes of orthopyroxenite and clinopyroxenite formation in the Josephine ophiolite (USA), using new trace and major element analyses of pyroxenite minerals, closure temperatures, elemental profiles, diffusion modeling, and equilibrium melt calculations. We show that multiple melt percolation events are required to explain the variable chemistry of peridotite-hosted pyroxenite veins, consistent with previous observations in the xenolith record. We argue that the Josephine ophiolite evolved in conditions intermediate between back-arc and sub-arc. Clinopyroxenites formed at an early stage of ophiolite formation from percolation of high-Ca boninites. Several million years later, and shortly before exhumation, orthopyroxenites formed through remelting of the Josephine harzburgites through percolation of ultra-depleted low-Ca boninites. Thus, we support the hypothesis that multiple types of boninites can be created at different stages of arc formation and that ophiolitic pyroxenites uniquely record the timing of boninite percolation in subduction zone mantle.


2012 ◽  
Vol 335-336 ◽  
pp. 145-153 ◽  
Author(s):  
Yen-Ting Ko ◽  
Ban-Yuan Kuo ◽  
Kuo-Lung Wang ◽  
Shu-Chuan Lin ◽  
Shu-Huei Hung
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document