A Fractional Crystallization Link between Komatiites, Basalts, and Dunites of the Palaeoproterozoic Winnipegosis Komatiite Belt, Manitoba, Canada

2020 ◽  
Vol 61 (5) ◽  
Author(s):  
Pedro Waterton ◽  
D Graham Pearson ◽  
Stanley A Mertzman ◽  
Karen R Mertzman ◽  
Bruce A Kjarsgaard

Abstract The rock type most commonly associated with komatiite throughout Earth’s history is tholeiitic basalt. Despite this well-known association, the link between komatiite and basalt formation is still debated. Two models have been suggested: that tholeiitic basalts represent the products of extensive fractional crystallization of komatiite, or that basalts are formed by lower degrees of mantle melting than komatiites in the cooler portions of a zoned plume. We present major and trace element data for tholeiitic basalts (∼7·5 wt% MgO) and dunites (46–48 wt% MgO) from the Palaeoproterozoic Winnipegosis Komatiite Belt (WKB), which, along with previous data for WKB komatiites (17–26 wt% MgO), are utilized to explore the potential links between komatiite and basalt via crystallization processes. The dunites are interpreted as olivine + chromite cumulates that were pervasively serpentinized during metamorphism. Their major and immobile trace element relationships indicate that the accumulating olivine was highly magnesian (Mg# = 0·91–0·92), and that small amounts (4–7 wt% on average) of intercumulus melt were trapped during their formation. These high inferred olivine Mg# values suggest that the dunites are derived from crystallization of komatiite. The tholeiitic basalts have undergone greenschist-facies metamorphism and have typical geochemical characteristics for Palaeoproterozoic basalts, with the exception of high FeO contents. Their REE patterns are similar to Winnipegosis komatiites, although absolute concentrations are higher by a factor of ∼2·5. The ability of thermodynamic modelling with MELTS software to reproduce komatiite liquid lines of descent (LLD) is evaluated by comparison with the crystallization sequence and mineral compositions observed for Winnipegosis komatiites. With minor caveats, MELTS is able to successfully reproduce the LLD. This modelling is extended to higher pressures to simulate crystallization of komatiitic melt in an upper crustal magma chamber. All major and rare earth element characteristics of the tholeiitic basalts can be reproduced by ∼60 % crystallization of a Winnipegosis komatiite-like parental melt at pressures of ∼1·5–2·5 kbar at oxygen fugacities between QFM − 1 and QFM + 1, where QFM is the quartz–fayalite–magnetite buffer. Winnipegosis basalts have low Mg# values that are not in equilibrium with mantle peridotite. They therefore cannot represent primary mantle melts derived from cooler mantle than the komatiites, and require fractional crystallization processes in their formation. Furthermore, their trace element characteristics indicate a depth of melting indistinguishable from that of the Winnipegosis komatiites, and derivation from an identical depleted mantle source. All geochemical and geological evidence is therefore consistent with their derivation from a komatiitic melt, and the presence of a large komatiite-derived dunite body in the WKB provides evidence of extensive fractionation of komatiite in the upper crust. The observed uniform basalt compositions are interpreted as the result of a density minimum in the evolving komatiitic melt at temperatures between clinopyroxene and plagioclase saturation, with efficient extraction of melt from a mixture containing ∼60 % crystals. We conclude that the WKB basalts formed by fractional crystallization of a komatiitic parental melt, and suggest that this model may be more broadly applicable to other localities where komatiites and associated basalts show similar geochemical or isotopic characteristics.

Solid Earth ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 915-938 ◽  
Author(s):  
I. V. Ashchepkov ◽  
N. V. Alymova ◽  
A. M. Logvinova ◽  
N. V. Vladykin ◽  
S. S. Kuligin ◽  
...  

Abstract. Major and trace element variations in picroilmenites from Late Devonian kimberlite pipes in Siberia reveal similarities within the region in general, but show individual features for ilmenites from different fields and pipes. Empirical ilmenite thermobarometry (Ashchepkov et al., 2010), as well as common methods of mantle thermobarometry and trace element geochemical modeling, shows long compositional trends for the ilmenites. These are a result of complex processes of polybaric fractionation of protokimberlite melts, accompanied by the interaction with mantle wall rocks and dissolution of previous wall rock and metasomatic associations. Evolution of the parental magmas for the picroilmenites was determined for the three distinct phases of kimberlite activity from Yubileynaya and nearby Aprelskaya pipes, showing heating and an increase of Fe# (Fe# = Fe / (Fe + Mg) a.u.) of mantle peridotite minerals from stage to stage and splitting of the magmatic system in the final stages. High-pressure (5.5–7.0 GPa) Cr-bearing Mg-rich ilmenites (group 1) reflect the conditions of high-temperature metasomatic rocks at the base of the mantle lithosphere. Trace element patterns are enriched to 0.1–10/relative to primitive mantle (PM) and have flattened, spoon-like or S- or W-shaped rare earth element (REE) patterns with Pb > 1. These result from melting and crystallization in melt-feeding channels in the base of the lithosphere, where high-temperature dunites, harzburgites and pyroxenites were formed. Cr-poor ilmenite megacrysts (group 2) trace the high-temperature path of protokimberlites developed as result of fractional crystallization and wall rock assimilation during the creation of the feeder systems prior to the main kimberlite eruption. Inflections in ilmenite compositional trends probably reflect the mantle layering and pulsing melt intrusion during melt migration within the channels. Group 2 ilmenites have inclined REE enriched patterns (10–100)/PM with La / Ybn ~ 10–25, similar to those derived from kimberlites, with high-field-strength elements (HFSE) peaks (typical megacrysts). A series of similar patterns results from polybaric Assimilation + fractional crystallization (AFC) crystallization of protokimberlite melts which also precipitated sulfides (Pb < 1) and mixed with partial melts from garnet peridotites. Relatively low-Ti ilmenites with high-Cr content (group 3) probably crystallized in the metasomatic front under the rising protokimberlite source and represent the product of crystallization of segregated partial melts from metasomatic rocks. Cr-rich ilmenites are typical of veins and veinlets in peridotites crystallized from highly contaminated magma intruded into wall rocks in different levels within the mantle columns. Ilmenites which have the highest trace element contents (1000/PM) have REE patterns similar to those of perovskites. Low Cr contents suggest relatively closed system fractionation which occurred from the base of the lithosphere up to the garnet–spinel transition, according to monomineral thermobarometry for Mir and Dachnaya pipes. Restricted trends were detected for ilmenites from Udachnaya and most other pipes from the Daldyn–Alakit fields and other regions (Nakyn, Upper Muna and Prianabarie), where ilmenite trends extend from the base of the lithosphere mainly up to 4.0 GPa. Interaction of the megacryst forming melts with the mantle lithosphere caused heating and HFSE metasomatism prior to kimberlite eruption.


1997 ◽  
Vol 34 (9) ◽  
pp. 1272-1285 ◽  
Author(s):  
T. E. Smith ◽  
P. E. Holm ◽  
N. M. Dennison ◽  
M. J. Harris

Three intimately interbedded suites of volcanic rocks are identified geochemically in the Burnt Lake area of the Belmont Domain in the Central Metasedimentary Belt, and their petrogenesis is evaluated. The Burnt Lake back-arc tholeiitic suite comprises basalts similar in trace element signature to tholeiitic basalts emplaced in back-arc basins formed in continental crust. The Burnt Lake continental tholeiitic suite comprises basalts and andésites similar in trace element composition to continental tholeiitic sequences. The Burnt Lake felsic pyroclastic suite comprises rhyolitic pyroclastics having major and trace element compositions that suggest that they were derived from crustal melts. Rare earth element models suggest that the Burnt Lake back-arc tholeiitic rocks were formed by fractional crystallization of mafic magmas derived by approximately 5% partial melting of an amphibole-bearing depleted mantle, enriched in light rare earth elements by a subduction component. The modelling also suggests that the Burnt Lake continental tholeiitic rocks were formed by contamination – fractional crystallization of mixtures of mafic magmas, derived by ~3% partial melting of the subduction-modified source, and rhyolitic crustal melts. These models are consistent with the suggestion that the Belmont Domain of the Central Metasedimentary Belt formed as a back-arc basin by attenuation of preexisting continental crust above a westerly dipping subduction zone.


Consideration of theoretical, experimental and natural rock data show that basic-ultrabasic melt will disperse along mineral grain edges in olivine-rich mantle rock and thereby form a connected three-dimensional network throughout the rock even when present in only small (less than 1%) volumes. The viscosity of such melts will also allow small (less than 1-5%) volumes to move on appropriate geological timescales as a result of gravity-driven compaction. These features mean that small volume basic-ultrabasic melts are capable of infiltrating and metasomatizing mantle peridotites. Modally metasomatized mantle xenoliths are commonly closely associated with an array of dyke-like and vein injection phenomena. Textural, structural and modal characteristics of a wide array of mantle dykes, veins and metasomatic rocks suggest that such rocks have certain features in common with cumulates, and might usefully be distinguished as dyke cumulates and metasomatic infill cumulates . They represent partial crystal precipitates from melt flowing along channelways or pervasively through peridotite, and their bulk rock compositions provide poor guides to actual mantle melt compositions. The crystallization of the minerals in dykes/veins/ metasomites causes differentiation of the melt by crystal fractionation processes, but at the same time the melt may maintain equilibrium with host rock phases (e.g. olivine) and chromatographic column or percolation effects will control the range of transport of different chemical components by the melt. These combined processes are referred to as percolative fractional crystallization . Data on the actual trace element compositions of melt in equilibrium with the minerals of mantle dykes/veins/metasomites are calculated from trace element analyses of the minerals by using partition coefficients. For a wide variety of metasomatic suites, the calculated melt compositions show a progression of trace element abundances from ones similar to primitive asthenospheric OIB-like compositions towards more incompatible element enriched compositions. Thus they support the hypothesis that fractional crystallization and percolative fractional crystallization processes operating upon initial primitive asthenospheric melts may yield melt compositions matching those necessary for wide varieties of mantle metasomatism. The differentiation of the melts and evolution of the metasomatic rocks proceed together. No evidence for the involvement of volatile-rich fluids distinct from melts has been found. The trace element compositions of many kimberlitic and lamproitic melts may also arise by processes of percolative fractional crystallization of initially primitive melts with oIB-like trace element compositions, as a result of flow through mantle peridotite.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 711
Author(s):  
Irina Nedosekova ◽  
Nikolay Vladykin ◽  
Oksana Udoratina ◽  
Boris Belyatsky

The Ilmeno–Vishnevogorsk (IVC), Buldym, and Chetlassky carbonatite complexes are localized in the folded regions of the Urals and Timan. These complexes differ in geochemical signatures and ore specialization: Nb-deposits of pyrochlore carbonatites are associated with the IVC, while Nb–REE-deposits with the Buldym complex and REE-deposits of bastnäsite carbonatites with the Chetlassky complex. A comparative study of these carbonatite complexes has been conducted in order to establish the reasons for their ore specialization and their sources. The IVC is characterized by low 87Sr/86Sri (0.70336–0.70399) and εNd (+2 to +6), suggesting a single moderately depleted mantle source for rocks and pyrochlore mineralization. The Buldym complex has a higher 87Sr/86Sri (0.70440–0.70513) with negative εNd (−0.2 to −3), which corresponds to enriched mantle source EMI-type. The REE carbonatites of the Chetlassky сomplex show low 87Sr/86Sri (0.70336–0.70369) and a high εNd (+5–+6), which is close to the DM mantle source with ~5% marine sedimentary component. Based on Sr–Nd isotope signatures, major, and trace element data, we assume that the different ore specialization of Urals and Timan carbonatites may be caused not only by crustal evolution of alkaline-carbonatite magmas, but also by the heterogeneity of their mantle sources associated with different degrees of enrichment in recycled components.


2021 ◽  
Author(s):  
S J Piercey ◽  
J -L Pilote

New high precision lithogeochemistry and Nd and Hf isotopic data were collected on felsic rocks of the Rambler Rhyolite formation from the Ming volcanogenic massive sulphide (VMS) deposit, Baie Verte Peninsula, Newfoundland. The Rambler Rhyolite formation consists of intermediate to felsic volcanic and volcaniclastic rocks with U-shaped primitive mantle normalized trace element patterns with negative Nb anomalies, light rare earth element-enrichment (high La/Sm), and distinctively positive Zr and Hf anomalies relative to surrounding middle rare earth elements (high Zr-Hf/Sm). The Rambler Rhyolite samples have epsilon-Ndt = -2.5 to -1.1 and epsilon-Hft = +3.6 to +6.6; depleted mantle model ages are TDM(Nd) = 1.3-1.5 Ga and TDM(Hf) = 0.9-1.1Ga. The decoupling of the Nd and Hf isotopic data is reflected in epsilon-Hft isotopic data that lies above the mantle array in epsilon-Ndt -epsilon-Hft space with positive ?epsilon-Hft values (+2.3 to +6.2). These Hf-Nd isotopic attributes, and high Zr-Hf/Sm and U-shaped trace element patterns, are consistent with these rocks having formed as slab melts, consistent with previous studies. The association of these slab melt rocks with Au-bearing VMS mineralization, and their FI-FII trace element signatures that are similar to rhyolites in Au-rich VMS deposits in other belts (e.g., Abitibi), suggests that assuming that FI-FII felsic rocks are less prospective is invalid and highlights the importance of having an integrated, full understanding of the tectono-magmatic history of a given belt before assigning whether or not it is prospective for VMS mineralization.


Author(s):  
Xiao-Fei Xu ◽  
Long-Long Gou ◽  
Xiao-Ping Long ◽  
Yu-Hang Zhao ◽  
Feng Zhou

Abstract Phase equilibria and trace-element modeling using two previously reported basaltic bulk-rock compositions (samples D11 and 104-16), were carried out in this study, in order to better understand mechanism of low-pressure (LP) partial melting of mafic rocks and associated melt compositions. The T–MH2O pseudosections for both samples at three pressures (i.e. 0.5, 1.0 and 2.0 kbar) display that the H2O-stability field gradually increased with decreasing pressure within the T–MH2O range of 600–1100 °C and 0–12 mol.%. The H2O contents of 10, 5.0, and 0.5 mol.% were selected on the basis of the T–MH2O pseudosections to calculate P–T pseudosections over a P–T window of 0.1–3 kbar and 600–1100 °C, so that the reactions of both the H2O-fluxed and -absent meltings at LP conditions can be investigated. The solidus displays a negative or near-vertical P–T slope, and occurs between 710 and 900 °C at pressure between 0.1 and 3.0 kbar. LP melting of metabasites is attributed to the reactions of the hydrous mineral (hornblende and/or biotite) melting and anhydrous mineral (plagioclase, orthopyroxene, and augite) melting. The hydrous mineral melting is gradually replaced by anhydrous mineral melting as pressure decreasing, as the stability of hornblende decreases with falling pressure. With increasing temperature at a given pressure, the modeled melt compositions are expressed as progressions of the granite-granodiorite-gabbroic diorite fields for sample D11and granite-quartz monzonite-monzonite-gabbroic diorite fields for sample 104-16 on the total alkali–silica diagram. The modeled melts produced through the H2O-fluxed melting display higher Al2O3, CaO, MgO, and lower SiO2 and K2O than those formed by H2O-absent melting at the same P–T conditions. Furthermore, the modeled melts formed by H2O-absent melting, become richer in Al2O3, CaO, MgO, FeO, Na2O, but poorer in SiO2 and K2O as increasing water content. The results of trace-element modeling suggests that the nearly flat REE patterns of modeled bulk-rock composition are inherited by all the modeled melts, and the negative Eu anomalies and Sr depletion of the modeled melts gradually decrease as melting degree increases. Combined with the geochemical characteristics of natural oceanic plagiogranites, which have low K2O contents and flat or slightly LREE-depleted REE patterns, our results imply that a bulk-rock composition with low K2O (&lt;0.17 wt.%) and slightly LREEs depletion is the most likely protolith composition (e.g. basalt D11) for plagiogranites, and the compositions of modeled melts formed by LP H2O-absent partial melting of the basalt D11 at relatively high temperatures (1000–1025 °C) are coincident with those of 1256D tonalites.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 465 ◽  
Author(s):  
Kai Sun ◽  
Tao Wu ◽  
Xuesong Liu ◽  
Xue-Gang Chen ◽  
Chun-Feng Li

Mid-ocean ridge basalts (MORB) in the South China Sea (SCS) record deep crust-mantle processes during seafloor spreading. We conducted a petrological and geochemical study on the MORBs obtained from the southwest sub-basin of the SCS at site U1433 and U1434 of the International Ocean Discovery Program (IODP) Expedition 349. Results show that MORBs at IODP site U1433 and U1434 are unaffected by seawater alteration, and all U1433 and the bulk of U1434 rocks belong to the sub-alkaline low-potassium tholeiitic basalt series. Samples collected from site U1433 and U1434 are enriched mid-ocean ridge basalts (E-MORBs), and the U1434 basalts are more enriched in incompatible elements than the U1433 samples. The SCS MORBs have mainly undergone the fractional crystallization of olivine, accompanied by the relatively weak fractional crystallization of plagioclase and clinopyroxene during magma evolution. The magma of both sites might be mainly produced by the high-degree partial melting of spinel peridotite at low pressures. The degree of partial melting at site U1434 was lower than at U1433, ascribed to the relatively lower spreading rate. The magmatic source of the southwest sub-basin basalts may be contaminated by lower continental crust and contributed by recycled oceanic crust component during the opening of the SCS.


Sign in / Sign up

Export Citation Format

Share Document