scholarly journals Dynamics of logarithmic negativity and mutual information in smooth quenches

2020 ◽  
Vol 2020 (7) ◽  
Author(s):  
Hiroyuki Fujita ◽  
Mitsuhiro Nishida ◽  
Masahiro Nozaki ◽  
Yuji Sugimoto

Abstract We study the time evolution of mutual information (MI) and logarithmic negativity (LN) in two-dimensional free scalar theory with two kinds of time-dependent masses: one time evolves continuously from non-zero mass to zero; the other time evolves continuously from finite mass to finite mass, but becomes massless once during the time evolution. We call the former protocol ECP, and the latter protocol CCP. Through numerical computation, we find that the time evolution of MI and LN in ECP follows a quasi-particle picture except for their late-time evolution, whereas that in CCP oscillates. Moreover, we find a qualitative difference between MI and LN which has not been known so far: MI in ECP depends on the slowly moving modes, but LN does not.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Sébastien Descotes-Genon ◽  
Martín Novoa-Brunet ◽  
K. Keri Vos

Abstract We consider the time-dependent analysis of Bd→ KSℓℓ taking into account the time-evolution of the Bd meson and its mixing into $$ {\overline{B}}_d $$ B ¯ d . We discuss the angular conventions required to define the angular observables in a transparent way with respect to CP conjugation. The inclusion of time evolution allows us to identify six new observables, out of which three could be accessed from a time-dependent tagged analysis. We also show that these observables could be obtained by time-integrated measurements in a hadronic environment if flavour tagging is available. We provide simple and precise predictions for these observables in the SM and in NP models with real contributions to SM and chirally flipped operators, which are independent of form factors and charm-loop contributions. As such, these observables provide robust and powerful cross-checks of the New Physics scenarios currently favoured by global fits to b → sℓℓ data. In addition, we discuss the sensitivity of these observables with respect to NP scenarios involving scalar and tensor operators, or CP-violating phases. We illustrate how these new observables can provide a benchmark to discriminate among the various NP scenarios in b → sμμ. We discuss the extension of these results for Bs decays into f0, η or η′.


2010 ◽  
Vol 19 (14) ◽  
pp. 2325-2330
Author(s):  
SOURISH DUTTA ◽  
ROBERT J. SCHERRER ◽  
STEPHEN D. H. HSU

We propose a class of simple dark energy models which predict a late-time dark radiation component and a distinctive time-dependent equation of state w(z) for redshift z < 3. The dark energy field can be coupled strongly enough to standard model particles to be detected in colliders, and the model requires only modest additional particle content and little or no fine-tuning other than a new energy scale of order milli-electron volts.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Yan Song ◽  
Tong-Tong Hu ◽  
Yong-Qiang Wang

Abstract We study the model of four-dimensional Einstein-Maxwell-Λ theory minimally coupled to a massive charged self-interacting scalar field, parameterized by the quartic and hexic couplings, labelled by λ and β, respectively. In the absence of scalar field, there is a class of counterexamples to cosmic censorship. Moreover, we investigate the full nonlinear solution with nonzero scalar field included, and argue that these counterexamples can be removed by assuming charged self-interacting scalar field with sufficiently large charge not lower than a certain bound. In particular, this bound on charge required to preserve cosmic censorship is no longer precisely the weak gravity bound for the free scalar theory. For the quartic coupling, for λ < 0 the bound is below the one for the free scalar fields, whereas for λ > 0 it is above. Meanwhile, for the hexic coupling the bound is always above the one for the free scalar fields, irrespective of the sign of β.


2012 ◽  
Vol 49 (03) ◽  
pp. 612-626
Author(s):  
Boris L. Granovsky ◽  
Alexander V. Kryvoshaev

We prove that a stochastic process of pure coagulation has at any timet≥ 0 a time-dependent Gibbs distribution if and only if the rates ψ(i,j) of single coagulations are of the form ψ(i;j) =if(j) +jf(i), wherefis an arbitrary nonnegative function on the set of positive integers. We also obtain a recurrence relation for weights of these Gibbs distributions that allow us to derive the general form of the solution and the explicit solutions in three particular cases of the functionf. For the three corresponding models, we study the probability of coagulation into one giant cluster by timet&gt; 0.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Genly Leon ◽  
Sebastián Cuéllar ◽  
Esteban González ◽  
Samuel Lepe ◽  
Claudio Michea ◽  
...  

AbstractScalar field cosmologies with a generalized harmonic potential and a matter fluid with a barotropic equation of state (EoS) with barotropic index $$\gamma $$ γ for the locally rotationally symmetric (LRS) Bianchi I and flat Friedmann–Lemaître–Robertson–Walker (FLRW) metrics are investigated. Methods from the theory of averaging of nonlinear dynamical systems are used to prove that time-dependent systems and their corresponding time-averaged versions have the same late-time dynamics. Therefore, the simplest time-averaged system determines the future asymptotic behavior. Depending on the values of $$\gamma $$ γ , the late-time attractors of physical interests are flat quintessence dominated FLRW universe and Einstein-de Sitter solution. With this approach, the oscillations entering the system through the Klein–Gordon (KG) equation can be controlled and smoothed out as the Hubble parameter H – acting as time-dependent perturbation parameter – tends monotonically to zero. Numerical simulations are presented as evidence of such behavior.


2015 ◽  
Vol 113 (5) ◽  
pp. 1342-1357 ◽  
Author(s):  
Davide Bernardi ◽  
Benjamin Lindner

The encoding and processing of time-dependent signals into sequences of action potentials of sensory neurons is still a challenging theoretical problem. Although, with some effort, it is possible to quantify the flow of information in the model-free framework of Shannon's information theory, this yields just a single number, the mutual information rate. This rate does not indicate which aspects of the stimulus are encoded. Several studies have identified mechanisms at the cellular and network level leading to low- or high-pass filtering of information, i.e., the selective coding of slow or fast stimulus components. However, these findings rely on an approximation, specifically, on the qualitative behavior of the coherence function, an approximate frequency-resolved measure of information flow, whose quality is generally unknown. Here, we develop an assumption-free method to measure a frequency-resolved information rate about a time-dependent Gaussian stimulus. We demonstrate its application for three paradigmatic descriptions of neural firing: an inhomogeneous Poisson process that carries a signal in its instantaneous firing rate; an integrator neuron (stochastic integrate-and-fire model) driven by a time-dependent stimulus; and the synchronous spikes fired by two commonly driven integrator neurons. In agreement with previous coherence-based estimates, we find that Poisson and integrate-and-fire neurons are broadband and low-pass filters of information, respectively. The band-pass information filtering observed in the coherence of synchronous spikes is confirmed by our frequency-resolved information measure in some but not all parameter configurations. Our results also explicitly show how the response-response coherence can fail as an upper bound on the information rate.


Author(s):  
Jean Zinn-Justin

Time evolution, near a phase transition in the critical domain of critical systems not far from equilibrium, using a Langevin-type evolution is studied. Typical quantities of interest are relaxation rates towards equilibrium, time-dependent correlation functions and transport coefficients. The main motivation for such a study is that, in systems in which the dynamics is local (on short time-scales, a modification of a dynamic variable has an influence only locally in space) when the correlation length becomes large, a large time-scale emerges, which characterizes the rate of time evolution. This phenomenon called critical slowing down leads to universal behaviour and scaling laws for time-dependent quantities. In contrast with the situation in static critical phenomena, there is no clean and systematic derivation of the dynamical equations governing the time evolution in the critical domain, because often the time evolution is influenced by conservation laws involving the order parameter, or other variables like energy, momentum, angular momentum, currents and so on. Indeed, the equilibrium distribution does not determine the driving force in the Langevin equation, but only the dissipative couplings are generated by the derivative of the equilibrium Hamiltonian, and directly related to the static properties. The purely dissipative Langevin equation specifically discussed, corresponding to static models like the f4 field theory and two-dimensional models. Renormalization group (RG) equations are derived, and dynamical scaling relations established.


Sign in / Sign up

Export Citation Format

Share Document