scholarly journals A novel antibacterial biomaterial mesh coated by chitosan and tigecycline for pelvic floor repair and its biological performance

2020 ◽  
Vol 7 (5) ◽  
pp. 483-490
Author(s):  
Changyan Liang ◽  
You Ling ◽  
Feng Wei ◽  
Lijie Huang ◽  
Xiaomao Li

Abstract The biomaterials composed of mammalian extracellular matrix (ECM) have a great potential in pelvic floor tissue repair and functional reconstruction. However, bacterial infection does cause great damage to the repair function of biomaterials which is the major problem in clinical utilization. Therefore, the development of biological materials with antimicrobial effect is of great clinical significance for pelvic floor repair. Chitosan/tigecycline (CS/TGC) antibacterial biofilm was prepared by coating CS/TGC nanoparticles on mammalian-derived ECM. Infrared spectroscopy, scanning electron microscopy, bacteriostasis circle assay and static dialysis methods were used to characterize the membrane. MTS assay kit and DAPI fluorescence staining were used to evaluate cytotoxicity and cell adhesion. The biocompatibility was assessed by subabdominal implantation model in goats. Subcutaneous antimicrobial test in rabbit back was used to evaluate the antimicrobial and repairing effects on the infected wounds in vivo. Infrared spectroscopy showed that the composite coating had been successfully modified. The antibacterial membrane retained the main structure of ECM multilayer fibers. In vitro release of biomaterials showed sustained release and stability. In vivo studies showed that the antibacterial biological membrane had low cytotoxicity, fast degradation, good compatibility, anti-infection and excellent repair ability.

Author(s):  
Mohini Sihare ◽  
Rajendra Chouksey

Aim: Nateglinide is a quick acting anti-diabetic medication whose potent activity lasts for a short duration. One of the dangerous side effects of nateglinide administration is rapid hypoglycemia, a condition that needs to be monitored carefully to prevent unnecessary fatalities. The aim of the study was to develop a longer lasting and slower releasing formulation of nateglinide that could be administered just once daily. Methods: Matrix tablets of nateglinide were prepared in combination with the polymers hydroxypropylmethylcellulose (HPMC), eudragits, ethyl cellulose and polyethylene oxide and the formulated drug release patterns were evaluated using in vitro and in vivo studies. Conclusion: Of the seventeen formulated matrix tablets tested, only one formulation labelled HA-2 that contained 15% HPMC K4M demonstrated release profile we had aimed for. Further, swelling studies and scanning electron microscopic analysis confirmed the drug release mechanism of HA-2. The optimized formulation HA-2 was found to be stable at accelerated storage conditions for 3 months with respect to drug content and physical appearance. Mathematical analysis of the release kinetics of HA-2 indicated a coupling of diffusion and erosion mechanisms. In-vitro release studies and pharmacokinetic in vivo studies of HA-2 in rabbits confirmed the sustained drug release profile we had aimed for. Keywords: Hydroxypropylmethylcellulose, Matrix tablets, Nateglinide, Sustained release


Drug Research ◽  
2017 ◽  
Vol 67 (11) ◽  
pp. 653-660 ◽  
Author(s):  
Marilena Vlachou ◽  
Angeliki Siamidi ◽  
Dimitrios Spaneas ◽  
Dimitrios Lentzos ◽  
Polixeni Ladia ◽  
...  

AbstractThe aim of the present investigation was to develop matrix tablet formulations for the in vitro controlled release of two new tuberculocidal adamantane aminoethers (compounds III and IV), congeneric to the adamantane derivative SQ109, which is in final clinical trials, and aminoethers (I) and (II), using carefully selected excipients, such as polyvinylpyrrolidone, sodium alginate and lactose. The tablets were prepared using the direct compression method and dissolution experiments were conducted using the US Pharmacopoeia type II apparatus (paddle method) in gastric and intestinal fluids. The results suggest that both analogues, albeit more lipophilic than SQ109, and aminoethers (I) and (II), have the requisite in vitro release characteristics for oral administration. In conclusion, these formulations merit further assessment by conducting in vivo studies, at a later stage.


Drug Research ◽  
2017 ◽  
Vol 67 (08) ◽  
pp. 447-450 ◽  
Author(s):  
Marilena Vlachou ◽  
Angeliki Siamidi ◽  
Evanthia Diamantidi ◽  
Alexandra Iliopoulou ◽  
Ioannis Papanastasiou ◽  
...  

AbstractThe aim of the present investigation was to develop matrix tablet formulations for the in vitro controlled release of 2 new tuberculocidal adamantane aminoethers (compounds I and II), congeneric to the adamantane derivative SQ109, which is in final clinical trials, using carefully selected excipients, such as polyvinylpyrrolidone, sodium alginate and lactose. The tablets were prepared using the direct compression method and dissolution experiments were conducted using the US Pharmacopoeia type II apparatus (paddle method) in gastric and intestinal fluids. The results confirm that both analogues, albeit more lipophilic than SQ109, showed satisfactory in vitro release characteristics from solid pharmaceutical formulations. In conclusion, these formulations merit further assessment by conducting in the future bioavailability in vivo studies.


Author(s):  
UPPULURU ASHOK KUMAR ◽  
GANDE SURESH

Objective: The present study aims at development of solid dispersions (SD) of candesartan cilexetil for enhanced solubility and bioavailability. Methods: About 18 SD formulations of candesartan cilexetil were prepared by solvent evaporation technique and evaluated. The in vitro release studies were conducted and the best formulation chosen was further characterized for Fourier transform infrared spectroscopy, Scanning electron microscope, X-ray, and stability. The in vivo evaluation study conducted in rats. Results: The formulation SD16 containing drug and Soluplus in 1:3 ratio along with 2% selective laser sintering was chosen optimal based on drug content (99.08%), and drug release (99.7%). In vivo studies conducted on SD16 showed that mean time to peak concentration (Tmax) was 2.0±0.05 and 4±0.2 h for the optimized and pure drug, respectively, while mean maximum drug concentration (Cmax) was 570.63±2.65 ng/mL and was significant as compared to the candesartan pure drug 175.146±0.07 ng/mL. Area under curve AUC0-∞ infinity for candesartan SD16 was higher (4860.61±1.05 ng.h/ml) than pure drug suspension 1480±1.72 ng.h/ml. Conclusion: Hence, the developed SD formulations enhanced the bioavailability of drug by 3 folds.


2020 ◽  
Vol 13 ◽  
Author(s):  
Ankita Dadwal ◽  
Neeraj Mishra ◽  
Raj Kumar Narang

Background: Psoriasis is an autoimmune disease of the skin with lapsing episodes of hyperkeratosis, irritation, and inflammation. Numerous traditional and novel drug delivery systems have been used for better penetration through psoriatic barrier cells and also for retention in the skin. As there is no effective remedy for better penetration and retention is there because of the absence of an ideal carrier for effective and safe delivery of antipsoriatic drugs. Objectives: The main objective of this project is to develop Squalene integrated NLC based carbopol 940 gel to create a local drug depot in skin for improved efficacy against psoriasis. Methods: Homogenization method is used for the formulation of Nanostructured Lipid Carrier and were characterized on the basis of size, entrapment efficiency, polydispersity index (PDI), viscosity, spreadability, DSC, zeta potential, % in vitro release, in vitro skin permeation and retention studies, physical storage stability studies and in vivo studies can use other alternative models for induction of psoriasis by severe redness, swelling macroscopically and microvascular dilation edema lasting for 10 days. Further histopathology study was done to basses of changes in the skin. Conclusion: The optimized formulation of nanostructured lipid carrier-based gel has shown significant sustained release of clobetasol propionate. Further, this formulation has also shown retention in skin because of squalene as it is sebum derived lipid show affinity towards the sebaceous gland.


2018 ◽  
Vol 44 (1) ◽  
pp. 6
Author(s):  
Ljiljana Suvajdžić ◽  
Slobodan Gigov ◽  
Aleksandar Rašković ◽  
Srđan Stojanović ◽  
Maja Bekut ◽  
...  

Background: Multiple resistances to antibiotics are an emergent problem worldwide. Scientists intensively search for new substances with the antimicrobial potential or the mode to restore the activity of old-generation antibiotics. Ampicillin is the antibiotic with the expanded range of antimicrobial activity, but its use has decreased due to the poor absorption and highly developed resistance. In vivo studies showed that ampicillin has better absorption and bioavailability if combined with bile acid salts. The aim of this study was to examine antimicrobial effects of ampicillin alone and its combination with semisynthetic monoketocholic acid salt (MKH) in vitro.Materials, Methods & Results: In this study, commercial preparation of ampicillin and sodium salt of 3α,7α-dihydroxy-12oxo-5β-cholanate were used. Their effects were evaluated on Escherichia coli (E. coli), Enterococcus faecalis (E. faecalis) and Enterococcus faecium (E. faecium), obtained from urine specimens of dogs with clinically manifested cystitis. The first two investigated strains were ampicillin-sensitive, while E. faecium was resistant to ampicillin. Modified macrodilution method according to Clinical and Laboratory Standards Institute Guidelines (M7-A8) was performed. Bacterial suspension equivalent to 0.5 McFarland was prepared in saline, compared to the standard (Biomerieux) ad oculi. The density was checked spectrophotometrically at a wavelength of 625 nm and adjusted if necessary to the desired absorbance from 0.08 to 0.1. The resultant suspension was diluted 1:100 and inoculated in test tubes. Number of bacteria was counted on Petri plates using dilutions from 10-3 to 10-7 in order to obtain valid and countable plates. One hundred microliters of appropriate dilutions were aseptically plated in triplicate onto nutrient agar. Plates were incubated on 37°C for 72 h, under aerobic conditions. The number of colony forming units (CFU) was determined by direct counting. As a valid for enumeration, we took plates with 30 to 300 CFU. Percentage of killed bacteria for ampicillin was from 69.33-95.19% for E. coli, 87.1296.92% for E. faecalis and 7.20-33.30% for E. faecium. Ampicillin applied in the combination with MKH killed 99.99% to 100% of E. coli, 94.59% to 99.91% of E. faecalis and 31.73% to 64.76% of E. faecium. Mean percentage of killed bacteria for ampicillin was 81.93% for E. coli, 91.64% for E. faecalis, and 18.13% for E. faecium, while in combination with MKH percentage was 99.96% for E. coli, 98.23% for E. faecalis and 47.54% for E. faecium.Discussion: Results are presented as pharmacological minimal inhibitory concentration (MIC) values. Ampicillin was applied at the concentration higher than the therapeutic one, which could explain high MIC values for E. coli and E. faecalis. The combination of ampicillin with MKH showed the best improvement of antimicrobial effect on E. faecium (Δ = 29.41%), isolate that was resistant to ampicillin when applied alone. In all the investigated isolates, the combinations with MKH were more effective than ampicillin administered alone. It seems that MKH demonstrates a synergistic antimicrobial activity with ampicillin in vitro, which considerably decreases MIC values for all investigated isolates. These results implicate that MKH could restore the previous activity of ampicillin against some bacteria, which could be a significant benefit for clinical practice.


2020 ◽  
Vol 10 (2) ◽  
pp. 149-158
Author(s):  
Guilherme A.G. Martins ◽  
Fabio S. Murakami ◽  
Mauro S. Oliveira ◽  
Ana F. Furian ◽  
Helen Treichel ◽  
...  

Objective: Atorvastatin (ATV) is effective in reducing total cholesterol and low-density lipoprotein levels. Furthermore, it produces pleiotropic effects in neurodegenerative conditions such as Parkinson's, Alzheimer's, and epilepsy. However, due to the effective defense system of the central nervous system (CNS), the development of new medicines for clinical conditions has proven difficult. In this context, nanotechnology was applied as a promising solution to promote drug vectorization to the brain. Methods: The solvent emulsification-diffusion method was used to develop nanoparticles (NPs) based on polylactic acid and coated with polysorbate 80 containing ATV. Quality-by-Design (QbD) was used in the optimization of nanoparticles production through the application of the experimental design Box-Behnken Design. Results: After optimizing the independent factors including sonication time, surfactant concentration and surfactant volume, the NPs presented physicochemical characteristics such as entrapment efficiency of 86.4 ± 2.4%, mean size of 225.2 ± 4.8 nm, and zeta potential of -14.4 ± 0.36 mV. In the in vitro release study, approximately 20% of the encapsulated ATV was released. Conclusion: The application of QbD was very useful in demonstrating its applicability in the nanotechnological pharmaceutical area for controlling and predicting the influence of the variables in the production of NPs. The NPs developed in this study presented adequate physicochemical characteristics, which is promising for future in vivo studies. The physicochemical characteristics included entrapment efficiency of 86.4 ± 2.4%, mean size of 225.2 ± 4.8 nm, and zeta potential of -14.4 ± 0.36 mV. In the in vitro release study, approximately 20% of the encapsulated ATV was released. The application of QbD was very useful in demonstrating its applicability in the nanotechnological pharmaceutical area for controlling and predicting the influence of the variables in the production of NPs. The NPs developed in this study presented adequate physicochemical characteristics, which is promising for future in vivo studies.


Author(s):  
Biswajit Basu ◽  
Kevin Garala ◽  
Thimmasetty J

Within the oral mucosal cavity, the buccal region offers an attractive route of administration for systemic drug delivery. Pimozide patches were prepared using HPMC (15 & 47 cPs), carbopol 934, poly vinyl alcohol, and poly vinyl pyrolidone. FTIR and UV spectroscopic methods revealed that there is no interaction between pimozide and polymers. The patches were evaluated for their thickness uniformity, folding endurance, weight uniformity, content uniformity, swelling behaviour, tensile strength, and surface pH. In vitro release studies of pimozide-loaded patches in phosphate buffer (pH, 6.6) exhibited drug release in the range of 55.32 % to 97.49 % in 60 min. Data of in vitro release from patches were fit in to different equations and kinetic models to explain release kinetics. The models used were zero and first-order equations, Hixon-Crowell, Higuchi and Korsmeyer-Peppas models. In vivo absorption of pimozide from all the patches ranged from 47.96 % to 83.42 % in 60 min in human volunteers. In vivo studies in rabbits showed 85.97% of drug absorption from HPMC-15 cPs patch in 60 min. Good correlation among in vitro release and in vivo absorption of pimozide was observed


KIDNEYS ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 36-41
Author(s):  
D.D. Ivanov

Significance of methylene blue (MB) in therapy of methemoglobinemia, malaria and urinary tract infections (UTI) is well known. The antimicrobial, anti-inflammatory, and antioxidant effect of MB has been demonstrated in different in vitro and in vivo studies. Necessity to find the remedy against COVID-19 attracted the interest of investigators and general practitioners to MB worldwide. The review includes various experiences of MB use, in particular in the patients treated with MB during the COVID-19 epidemic with a preventive effect, as well as own experience on this topic. MB is widely used as a dye in a variety of biological sciences applications — diagnostic procedures and the treatment of multiple disorders, including cyanide, and carbon monoxide poisoning, and is considered to be nontoxic. The beneficial effects of MB in the management of patients with multiple small renal calculi, especially with infected stones, and prevention of new stone formation were presented in a 5-year study. Moreover, due to MB antifungal potential and antimicrobial effect, it reduces symptoms of UTI, improves quality of life and could prevent the recurrence of disease. The patented complex of MB with sage leaf extract and American cranberry fruit extract (Pembina Blue®) demonstrated significant reduction of pain and spasm in cystitis patients. Given the limited number of available UTI therapies with concomitant increase in drug resistance, the demand for the search of new safe and effective UTI treatments are inevitable. Considering the fact that MB is FDA-approved compound that is already used for various therapeutic options, and also owing to the distinct antioxidant, antifungal, antibacterial and anti-inflammatory mechanisms presented in this review, MB could be considered as a promising drug for future.


Sign in / Sign up

Export Citation Format

Share Document