Assessment of annual average effective dose status in the cohort of medical staff in Lithuania during 1991–2013

2015 ◽  
Vol 167 (4) ◽  
pp. 671-677 ◽  
Author(s):  
Vitalija Samerdokiene ◽  
Albinas Mastauskas ◽  
Vydmantas Atkocius
2014 ◽  
Vol 0 (2) ◽  
Author(s):  
I. M. Belay ◽  
E. O. Mihayluk ◽  
V. V. Parchenko ◽  
O. I. Panasenko ◽  
E. G. Knysh

2021 ◽  
Vol 14 (4) ◽  
pp. 309-316

Abstract: The aim of the current study was to measure indoor radon concentration levels and its resulting doses received by the students and staff in schools of the directorate of education in the north of Hebron region- Palestine, during the summer months from June to September (2018), using CR-39 detectors. In this study, a total of 567 CR-39-based radon detectors were installed in the selected schools. The average radon concentrations were found to be 90.0, 66.5 and 58.0 Bqm-3 in Halhul, Beit Umar and Alarrub camp schools, respectively. Based on the measured indoor radon data, the overall average effective dose for the studied area was found to be 0.31 mSvy-1. Reported values for radon concentrations and corresponding doses are lower than ICRP recommended limits for workplaces. The results show no significant radiological risk for the pupils and staff in the schools under investigation. Consequently, the health hazards related to radiation are expected to be negligible. Keywords: Radon concentration, Alpha particles, Annual effective dose, Schools. PACs: 29.40.−n.


2019 ◽  
Vol 39 (3) ◽  
pp. 809-824 ◽  
Author(s):  
P Ferrari ◽  
F Becker ◽  
Z Jovanovic ◽  
S Khan ◽  
E Bakhanova ◽  
...  

2016 ◽  
Vol 57 (4) ◽  
pp. 422-430 ◽  
Author(s):  
Masahiro Hosoda ◽  
Shinji Tokonami ◽  
Yasutaka Omori ◽  
Tetsuo Ishikawa ◽  
Kazuki Iwaoka

Abstract Due to the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, the evacuees from Namie Town still cannot reside in the town, and some continue to live in temporary housing units. In this study, the radon activity concentrations were measured at temporary housing facilities, apartments and detached houses in Fukushima Prefecture in order to estimate the annual internal exposure dose of residents. A passive radon–thoron monitor (using a CR-39) and a pulse-type ionization chamber were used to evaluate the radon activity concentration. The average radon activity concentrations at temporary housing units, including a medical clinic, apartments and detached houses, were 5, 7 and 9 Bq m −3 , respectively. Assuming the residents lived in these facilities for one year, the average annual effective doses due to indoor radon in each housing type were evaluated as 0.18, 0.22 and 0.29 mSv, respectively. The average effective doses to all residents in Fukushima Prefecture due to natural and artificial sources were estimated using the results of the indoor radon measurements and published data. The average effective dose due to natural sources for the evacuees from Namie Town was estimated to be 1.9 mSv. In comparison, for the first year after the FDNPP accident, the average effective dose for the evacuees due to artificial sources from the accident was 5.0 mSv. Although residents' internal and external exposures due to natural radionuclides cannot be avoided, it might be possible to lower external exposure due to the artificial radionuclides by changing some behaviors of residents.


Author(s):  
Marcello Iriti ◽  
Prisco Piscitelli ◽  
Eduardo Missoni ◽  
Alessandro Miani

Air pollution is a recent public health issue. In 2006, the World Health Organization (WHO) published updated air quality guidelines for a number of air pollutants (including PM10 and PM2.5), which recommended for particulate matter annual average concentration levels at half or less the limit values set by European legislation. In the European Union, around 80% of the European urban population is exposed to air pollution above the levels recommended by the WHO guidelines. Only in 2015 the WHO addressed for the first time the topic of the health impacts of air pollution in its general assembly, which adopted a resolution clearly defining air pollution as the world’s largest single environmental health risk factor. Nowadays, the WHO considers air pollution as a major public health threat, causing a 7% increase in overall mortality for each increase of 10 μg/m3 in annual average of PM2.5. This result has been achieved thanks to the outstanding efforts of the director of the WHO’s Environment and Public Health Department, Dr. Maria Neira, who has devoted her full commitment to highlighting the consequences that air pollution has on people’s health. More recently, at European level, the Air Quality Directive has been subject to a fitness check, published in 2019; the European Green Deal has since announced its aim to align EU air quality standards more closely with the WHO recommendations. Every year, the European Environment Agency (EEA) publishes its “Air Quality in Europe” Report to assess the figures on air pollution across Europe and related health impacts. However, environmental data provided by official regional or national agencies—used by decision makers to adopt preventive measures such as limitations on urban traffic or domestic heating—refer to legal thresholds established by the law (usually on the basis of values set at European level, at least for the EU). These legal thresholds, however, are not adequate to fully protect population against all impacts from air pollution as recommended by WHO and scientific evidence. Therefore, we point out the need for a medical reading of environmental monitoring data that should be performed both at national and regional or local level by health authorities, to foster population health protection against air pollution and guarantee the application of the precautionary principle. A stronger cooperation between environmental agencies and health authorities is needed to address the new challenges to human and planetary health arising from air pollution and climate change. Health authorities should integrate their medical staff with new professionals and researchers with adequate training in environmental sciences to foster population health protection against air pollution. For this purposes, multi-disciplinary research units or teams should be established by local health authorities on environmental health topics, working together with medical staff and environmental agencies for a mutual integration of competencies.


Author(s):  
A. A. Spasov ◽  
D. S. Yakovlev ◽  
D. V. Maltsev ◽  
M. V. Miroshnikov ◽  
K. T. Sultanova ◽  
...  

Thearticlepresentstheresultsofastudyoftheneurotoxicologicalprofileofanew5-HT2A-antagonist(compoundI) using the method of multi-test observation by «S. Irwin». The test parameters were evaluated in parallel groups, receiving the compound in doses beginning with the average effective dose (ED50) and with a multiple increase of 2, 5, 7.5 and 10 times.The study revealed that the neurotoxicological properties of compound I are characterized by dose-dependent activity. It has been shown that neurotoxicological changes in the behavior of the animals did not occur with the administration of compound I at average effective dose of 10 mg / kg and doses, exceeding the effective by 2 and 5 times; the animals welfare corresponds to that of the control group. The most significant effects by the administration of the studied compound developed in high doses, exceeding the effective by 7.5 and 10 times. The limits of the minimum toxic dose (TDmin) for compound I by oral administration has been found to be 50 mg / kg <TDmin≤75 mg / kg.


2021 ◽  
pp. 039156032199444
Author(s):  
Bob Yang ◽  
Noorunisa Suhail ◽  
Johan Marais ◽  
James Brewin

Background: Urolithiasis patients often require frequent urinary tract imaging, leading to high radiation exposure. CT Kidney-Ureter-Bladder (CT-KUB) is the gold standard in urolithiasis detection, however it is thought to harbour significant radiation load. Urologists have therefore utilised abdominal radiographs (XR-KUB) as an alternative, though with markedly lower sensitivity and specificity. We present the first contemporary UK study comparing the effective doses of XR-KUBs with low dose CT-KUBs. Method: Fifty-three patients were retrospectively identified in a single centre who underwent both a XR-KUB and a CT-KUB in 2018. Effective-Dose was measured by converting the recorded ‘Dose Area/Length Product’ via the International Commission on Radiological Protection formula. Results: The average effective dose of XR-KUBs and low dose CT-KUBs were 5.10 mSv and 5.31 mSv respectively. Thirty-four percent (18/53) of patients had a XR-KUBs with a higher effective dose than their low dose CT-KUB. Patients with higher Weight, BMI and AP diameter had higher effective doses for both their XR and low dose CT-KUBs. All patients in our study weighing over 92 kg or with a BMI greater than 32 had a XR-KUBs with a higher effective dose than their low dose CT-KUB. Conclusion: This data supports moving away from XR-KUBs for the investigation of urolithiasis, particularly in patients with a high BMI.


Sign in / Sign up

Export Citation Format

Share Document