AN EMPIRICAL STUDY: THE IMPACT OF THE NUMBER OF USERS ON ELECTRIC FIELD STRENGTH OF WIRELESS COMMUNICATIONS

2018 ◽  
Vol 182 (4) ◽  
pp. 494-501 ◽  
Author(s):  
Cetin Kurnaz ◽  
Begum Korunur Engiz ◽  
Ugur Kose
2005 ◽  
Vol 19 (07n09) ◽  
pp. 1703-1709 ◽  
Author(s):  
JINGZHOU LU ◽  
QINGBIN LI

The work presented in this paper bears on the feasibility and the operative technology of embedding electro-rheological (ER) fluids into cement mortar. We have made a cantilever mortar beam with controllable ER fluids filled in a central crack for the purpose of investigation on the evolutional rule of frequencies under different electric field strength by hammering test. The experimental results indicated that the influence of electric field strength upon the first frequency is more evident than that upon the second one, whereas that upon the third frequency is very little. In addition, the physical mechanism of the impact of the change of voltage on the frequency of smart beam structures embedded with ER fluids was discussed. This research sets up an experimental basis for the application of ER fluids in the domain of structural vibration control.


Author(s):  
Adedayo Otunola ◽  
Ayman El-Hag ◽  
Shesha Jayaram ◽  
William A Anderson

A study was conducted to assess the effectiveness of pulsed electric field (PEF) inactivation of a heterogeneous community of microbes. The aim was to assess the impact of process parameters on an indigenous population of microbes present in milk, rather than pure cultures used in other studies. Tests over an electric field strength range of 10 – 40 kV/cm and 10 to 120 pulses per millilitre showed that high electric field strength and pulse number inactivated microbes by up to approximately 2 log. Inoculum size affected PEF effectiveness when only a few pulses were applied. A significant log-reduction was achieved against the indigenous microbes found in milk that were apparently recalcitrant to commercial pasteurization. Microbial inactivation was more extensive when E. coli was not added to the indigenous population, indicating that the added pure culture was more resistant than the indigenous microbes. The milk fat content had a significant negative effect on the extent of log-reduction for indigenous microbes, when 2% and 18% levels were compared.


2016 ◽  
Vol 136 (10) ◽  
pp. 1420-1421
Author(s):  
Yusuke Tanaka ◽  
Yuji Nagaoka ◽  
Hyeon-Gu Jeon ◽  
Masaharu Fujii ◽  
Haruo Ihori

2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Swati Baruah ◽  
U. Sarma ◽  
R. Ganesh

Lane formation dynamics in externally driven pair-ion plasma (PIP) particles is studied in the presence of external magnetic field using Langevin dynamics (LD) simulation. The phase diagram obtained distinguishing the no-lane and lane states is systematically determined from a study of various Coulomb coupling parameter values. A peculiar lane formation-disintegration parameter space is identified; lane formation area extended to a wide range of Coulomb coupling parameter values is observed before disappearing to a mixed phase. The different phases are identified by calculating the order parameter. This and the critical parameters are calculated directly from LD simulation. The critical electric field strength value above which the lanes are formed distinctly is obtained, and it is observed that in the presence of the external magnetic field, the PIP system requires a higher value of the electric field strength to enter into the lane formation state than that in the absence of the magnetic field. We further find out the critical value of electric field frequency beyond which the system exhibits a transition back to the disordered state and this critical frequency is found as an increasing function of the electric field strength in the presence of an external magnetic field. The movement of the lanes is also observed in a direction perpendicular to that of the applied electric and magnetic field directions, which reveals the existence of the electric field drift in the system under study. We also use an oblique force field as the external driving force, both in the presence and absence of the external magnetic field. The application of this oblique force changes the orientation of the lane structures for different applied oblique angle values.


Author(s):  
Dhaval Solanki ◽  
Zeynab Rezaee ◽  
Anirban Dutta ◽  
Uttama Lahiri

Abstract Background Investigation of lobule-specific electric field effects of cerebellar transcranial direct current stimulation (ctDCS) on overground gait performance has not been performed, so this study aimed to investigate the feasibility of two lobule-specific bilateral ctDCS montages to facilitate overground walking in chronic stroke. Methods Ten chronic post-stroke male subjects participated in this repeated-measure single-blind crossover study, where we evaluated the single-session effects of two bilateral ctDCS montages that applied 2 mA via 3.14 cm2 disc electrodes for 15 min targeting (a) dentate nuclei (also, anterior and posterior lobes), and (b) lower-limb representations (lobules VIIb-IX). A two-sided Wilcoxon rank-sum test was performed at a 5% significance level on the percent normalized change measures in the overground gait performance. Partial least squares regression (PLSR) analysis was performed on the quantitative gait parameters as response variables to the mean lobular electric field strength as the predictors. Clinical assessments were performed with the Ten-Meter walk test (TMWT), Timed Up & Go (TUG), and the Berg Balance Scale based on minimal clinically important differences (MCID). Results The ctDCS montage specific effect was found significant using a two-sided Wilcoxon rank-sum test at a 5% significance level for 'Step Time Affected Leg' (p = 0.0257) and '%Stance Time Unaffected Leg' (p = 0.0376). The changes in the quantitative gait parameters were found to be correlated to the mean electric field strength in the lobules based on PLSR analysis (R2 statistic = 0.6574). Here, the mean electric field strength at the cerebellar lobules, Vermis VIIIb, Ipsi-lesional IX, Vermis IX, Ipsi-lesional X, had the most loading and were positively related to the 'Step Time Affected Leg' and '%Stance Time Unaffected Leg,' and negatively related to the '%Swing Time Unaffected Leg,' '%Single Support Time Affected Leg.' Clinical assessments found similar improvement in the TMWT (MCID: 0.10 m/s), TUG (MCID: 8 s), and BBS score (MCID: 12.5 points) for both the ctDCS montages. Conclusion Our feasibility study found an association between the lobular mean electric field strength and the changes in the quantitative gait parameters following a single ctDCS session in chronic stroke. Both the ctDCS montages improved the clinical outcome measures that should be investigated with a larger sample size for clinical validation. Trial registration: Being retrospectively registered.


2019 ◽  
Vol 58 (SC) ◽  
pp. SCCB09 ◽  
Author(s):  
George M. Christian ◽  
Stefan Schulz ◽  
Simon Hammersley ◽  
Menno J. Kappers ◽  
Martin Frentrup ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document