INITIAL EVALUATION OF INDIVIDUAL DOSES IN THE EARLY PHASE OF A NUCLEAR REACTOR ACCIDENT BASED ON IN-VIVO MONITORING DATA AND SIMULATED RADIOLOGICAL CONSEQUENCES

2018 ◽  
Vol 185 (1) ◽  
pp. 96-108
Author(s):  
Cécile Challeton-de Vathaire ◽  
Emmanuel Quentric ◽  
Damien Didier ◽  
Eric Blanchardon ◽  
Estelle Davesne ◽  
...  

Abstract In the early phase of a nuclear reactor accident, in-vivo monitoring of impacted population would be highly useful to detect potential contamination during the passage of the cloud and to estimate the dose from inhalation of measured radionuclides. However, it would be important to take into account other exposure components: (1) inhalation of unmeasured radionuclides and (2) external irradiation from the plume and from the radionuclides deposited on the soil. This article presents a methodology to calculate coefficients used to convert in-vivo measurement results directly into doses, not only from the measured radionuclides but from all sources of exposure according to model-based projected doses. This early interpretation of in-vivo measurements will provide an initial indication of individual exposure levels. As an illustration, the methodology is applied to two scenarios of accidents affecting a nuclear power plant: a loss-of-coolant accident leading to core meltdown and a steam generator tube rupture accident.

Author(s):  
Hidekazu Yoshikawa ◽  
Zhanguo Ma ◽  
Amjad Nawaz ◽  
Ming Yang

A new conceptual frame of how to design and validate a digital HIS (human interface system) on an innovative numerical simulation basis is proposed for the support of plant operators’ supervisory control of various types of automated complex NPPs (nuclear power plants). The proposed conceptual framework utilizes the object-oriented AI softwares for plant DiD (defense-in depth) risk monitor with the combination of nuclear reactor accident simulation by an advanced nuclear safety analysis code RELAP5/MOD4 and severe accident analysis code MAAP. The developed conceptual frame proposed in this paper will be applied for an example practice for the SBLOCA (small break loss of coolant accident) case of passive safety PWR (pressurized water reactor) AP1000.


2002 ◽  
Vol 13 (2) ◽  
pp. 191-206 ◽  
Author(s):  
Tomas Kåberger

The economic characteristics of nuclear power, with high investment cost and fuel costs lower than conventional fuels, make it possible to achieve low electricity prices when reactors supply marginal electricity. The support for nuclear power by the Swedish electricity consuming industry may be understood as efforts to create and defend a situation of over-capacity in the electricity production sector rather than as support for nuclear power as such. Politically the external costs of routine emissions of radioactive materials are difficult to internalise because they, like carbon dioxide, have global long-term effects. However, like the air pollutants already regulated, costs of reactor accidents, as well as the motives for taking on management costs of nuclear waste, are regional and within a generation in time. The market evaluation of accident risks has been deliberately destroyed by legislation set to favour nuclear power reactors. Societal economic rationality may be successfully applied in the energy sector. This paper describes how climate change risks were internalised in Sweden using carbon taxes under favourable political conditions. The resulting development of biofuels was surprisingly successful, indicating a potential for further modernisation of the energy supply system. Possible ways to restore the nuclear risk market in order to internalise nuclear reactor accident risks and waste costs by legislation are described. This may be done without the difficult quantification of environmental costs. Appropriate legislation may internalise the cost while creating conditions for market evaluation of these uncertain costs.


2021 ◽  
Vol 9 (2B) ◽  
Author(s):  
EDUARDO MADEIRA BORGES ◽  
GAIANÊ SABUNDJIAN

The aim of this paper is evaluated the consequences to ANGRA 2 nuclear power reactor and to identify the flow regimes, the heat transfer modes, and the correlations used by RELAP5/MOD3.2.gama code in ANGRA 2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 200cm2 of rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of ANGRA 2 (FSAR-A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of ANGRA 2 during the postulated accident. The results obtained for ANGRA 2 nuclear reactor core during the postulated accident were satisfactory when compared with the FSAR-A2. Additionally, the results showed the correct actuation of the ECCS guaranteeing the integrity of the reactor core.


Author(s):  
F. L. Cho

This paper introduces a newly developed paradigm for performing an integrated risk evaluation using Probabilistic Safety Assessment (PSA) Levels 1, 2 and 3 results for nuclear power plant applications. This paradigm focuses on the issues of radionuclide release transport phenomena and source term determination from a severe nuclear reactor accident.


Author(s):  
Michael H. Fox

A nuclear power plant is undergoing an emergency shutdown procedure known as a “scram” when there is an unusual vibration and the coolant level drops precipitously. Subsequent investigation by a shift supervisor reveals that X-rays of welds have been falsified and other problems exist with the plant that could potentially cause a core meltdown that would breach the containment building and cause an explosion. However, the results of the investigation are squelched and the plant is brought up to full power. The shift supervisor takes the control room hostage but is then shot by a SWAT team as the reactor is scrammed. A meltdown does not actually occur. No, this did not really happen, but these events—portrayed in the movie The China Syndrome —evoked a scenario in which a nuclear core meltdown could melt its way to China and contaminate an area the size of Pennsylvania. It also exposed a nuclear power culture that covered up safety issues rather than fixing them. It made for a compelling anti-nuclear story that scared a lot of people. And then a real core meltdown happened, 12 days later. The worst commercial nuclear power reactor accident in US history began on Three Mile Island, an island in the Susquehanna River three miles downstream from Middletown, Pennsylvania (hence its name). Two nuclear reactors were built on this island, but one of them (TMI-1) was shut down for refueling while the other one (TMI-2) was running at full power, rated at 786 MWe. At 4:00 a.m., what should have been a minor glitch in the secondary cooling loop began a series of events that led to a true core meltdown, but no China syndrome occurred and there was little contamination outside the plant. Nevertheless, it caused panic, roused anti-nuclear sentiment in the country, and shut down the construction of new nuclear power plants in the United States for decades. The nuclear reactors at Three Mile Island were pressurized water reactors (PWR), the type of reactor that Admiral Rickover had designed for power plants in US Navy nuclear submarines.


1987 ◽  
Vol 76 (2) ◽  
pp. 241-247 ◽  
Author(s):  
Pao-Shu Chang ◽  
Yau-Hui ho ◽  
Chien Chung ◽  
Liq-Ji Yuan ◽  
Pao-Shan Weng

Author(s):  
Gregory L. Finch ◽  
Richard G. Cuddihy

The elemental composition of individual particles is commonly measured by using energydispersive spectroscopic microanalysis (EDS) of samples excited with electron beam irradiation. Similarly, several investigators have characterized particles by using external monochromatic X-irradiation rather than electrons. However, there is little available information describing measurements of particulate characteristic X rays produced not from external sources of radiation, but rather from internal radiation contained within the particle itself. Here, we describe the low-energy (< 20 KeV) characteristic X-ray spectra produced by internal radiation self-excitation of two general types of particulate samples; individual radioactive particles produced during the Chernobyl nuclear reactor accident and radioactive fused aluminosilicate particles (FAP). In addition, we compare these spectra with those generated by conventional EDS.Approximately thirty radioactive particle samples from the Chernobyl accident were on a sample of wood that was near the reactor when the accident occurred. Individual particles still on the wood were microdissected from the bulk matrix after bulk autoradiography.


Sign in / Sign up

Export Citation Format

Share Document