scholarly journals Economic threat heightens conflict detection: sLORETA evidence

2020 ◽  
Vol 15 (9) ◽  
pp. 981-990
Author(s):  
Kyle Nash ◽  
Alex Tran ◽  
Josh Leota ◽  
Andy Scott

Abstract Economic threat has far-reaching emotional and social consequences, yet the impact of economic threat on neurocognitive processes has received little empirical scrutiny. Here, we examined the causal relationship between economic threat and conflict detection, a critical process in cognitive control associated with the anterior cingulate cortex (ACC). Participants (N = 103) were first randomly assigned to read about a gloomy economic forecast (Economic Threat condition) or a stable economic forecast (No-Threat Control condition). Notably, these forecasts were based on real, publicly available economic predictions. Participants then completed a passive auditory oddball task composed of frequent standard tones and infrequent, aversive white-noise bursts, a task that elicits the N2, an event-related potential component linked to conflict detection. Results revealed that participants in the Economic Threat condition evidenced increased activation source localized to the ACC during the N2 to white-noise stimuli. Further, ACC activation to conflict mediated an effect of Economic Threat on increased justification for personal wealth. Economic threat thus has implications for basic neurocognitive function. Discussion centers on how effects on conflict detection could shed light on the broader emotional and social consequences of economic threat.

2021 ◽  
Author(s):  
Margaret Swerdloff ◽  
Levi Hargrove

Abstract The impact of cognitive load on individuals with motor impairments is poorly understood. Cognitive load has been studied using subjective assessments, dual-task studies, physiological measures, and clinical metrics, which are specific to the motor task being performed and do not measure brain signals directly. Combining brain imaging with dual-task paradigms provides a quantitative, direct metric of cognitive load that is agnostic to the motor task. To better understand the impact of cognitive load during activities of daily living, we measured brain activity from a dry EEG headset as participants attended to an auditory stimulus paradigm during sitting, standing, and walking. The stimulus paradigm consisted of an auditory oddball task in which they had to report the number of oddball tones that were heard during each task. The P3 event-related potential, which is sensitive to cognitive load, was extracted from EEG signals in each condition. Results showed that P3 was significantly lower during walking compared to sitting (p = .039), indicating that cognitive load was higher during walking compared to the other activities. No significant differences in P3 were found between sitting and standing. Head motion did not have a significant impact on the measurement of cognitive load. These results encourage the use of a dry EEG system to further investigate cognitive load during dynamic activities in individuals with and without motor impairments.


2021 ◽  
Author(s):  
Magnus Liebherr ◽  
Andrew W. Corcoran ◽  
Phillip M. Alday ◽  
Scott Coussens ◽  
Valeria Bellan ◽  
...  

The capacity to regulate ones attention in accordance with fluctuating task demands and environmental contexts is an essential feature of adaptive behavior. Although the electrophysiological correlates of attentional processing have been extensively studied in the laboratory, relatively little is known about the way they unfold under more variable, ecologically-valid conditions. Accordingly, this study employed a real-world EEG design to investigate how attentional processing varies under increasing levels of cognitive, motor, and environmental demand. Forty-four participants were exposed to an auditory oddball task while (1) sitting in a quiet room inside the lab, (2) walking around a sports field, and (3) wayfinding across a university campus. In each condition, participants were instructed to either attend to (i.e., count) or ignore oddball stimuli. While behavioral performance was similar across the lab and field conditions, oddball count accuracy was significantly reduced in the campus condition. Moreover, event-related potential components (mismatch negativity and P3) elicited in both real-world settings differed significantly from those obtained under laboratory conditions. These findings demonstrate the impact of environmental factors on attentional processing during simultaneously-performed motor and cognitive tasks, highlighting the value of incorporating dynamic and unpredictable contexts within naturalistic designs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Magnus Liebherr ◽  
Andrew W. Corcoran ◽  
Phillip M. Alday ◽  
Scott Coussens ◽  
Valeria Bellan ◽  
...  

AbstractThe capacity to regulate one’s attention in accordance with fluctuating task demands and environmental contexts is an essential feature of adaptive behavior. Although the electrophysiological correlates of attentional processing have been extensively studied in the laboratory, relatively little is known about the way they unfold under more variable, ecologically-valid conditions. Accordingly, this study employed a ‘real-world’ EEG design to investigate how attentional processing varies under increasing cognitive, motor, and environmental demands. Forty-four participants were exposed to an auditory oddball task while (1) sitting in a quiet room inside the lab, (2) walking around a sports field, and (3) wayfinding across a university campus. In each condition, participants were instructed to either count or ignore oddball stimuli. While behavioral performance was similar across the lab and field conditions, oddball count accuracy was significantly reduced in the campus condition. Moreover, event-related potential components (mismatch negativity and P3) elicited in both ‘real-world’ settings differed significantly from those obtained under laboratory conditions. These findings demonstrate the impact of environmental factors on attentional processing during simultaneously-performed motor and cognitive tasks, highlighting the value of incorporating dynamic and unpredictable contexts within naturalistic designs.


2021 ◽  
Author(s):  
Enrico Fucci ◽  
Arnaud Poublan-couzardot ◽  
Oussama Abdoun ◽  
Antoine Lutz

The auditory mismatch negativity (MMN) is a well characterized event-related potential component which has gained recent attention in theoretical models describing the impact of various styles of mindfulness meditation on attentional processes and perceptual inference. Previous findings highlighted a differential modulation of the MMN amplitude by meditation states and degrees of expertise. In the present study, we attempted to replicate results from the recent literature with a data sample that allowed for increased statistical power compared to previous experiments. Relying on traditional frequentist analysis, we found no effects of meditation states and expertise on the auditory MMN amplitude, non-replicating our previous work (Fucci et al., 2018). Using a Bayesian approach, we found strong evidence against an interaction effect on the MMN amplitude between expertise groups and meditation states and only moderate evidence in favour of a weak effect of expertise during focused attention practice. On the other hand, we replicated previous evidence of increased alpha oscillatory power during meditation practices compared to a control state. We discuss our null findings in relation to factors that could undermine the replicability of previous research on this subject, namely low statistical power, use of flexible analysis methods and a possible publication bias leading to a misrepresentation of the available evidence.


2013 ◽  
Vol 44 (5) ◽  
pp. 311-319 ◽  
Author(s):  
Marco Brambilla ◽  
David A. Butz

Two studies examined the impact of macrolevel symbolic threat on intergroup attitudes. In Study 1 (N = 71), participants exposed to a macrosymbolic threat (vs. nonsymbolic threat and neutral topic) reported less support toward social policies concerning gay men, an outgroup whose stereotypes implies a threat to values, but not toward welfare recipients, a social group whose stereotypes do not imply a threat to values. Study 2 (N = 78) showed that, whereas macrolevel symbolic threat led to less favorable attitudes toward gay men, macroeconomic threat led to less favorable attitudes toward Asians, an outgroup whose stereotypes imply an economic threat. These findings are discussed in terms of their implications for understanding the role of a general climate of threat in shaping intergroup attitudes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniela Lichtman ◽  
Eyal Bergmann ◽  
Alexandra Kavushansky ◽  
Nadav Cohen ◽  
Nina S. Levy ◽  
...  

AbstractIQSEC2 is an X-linked gene that is associated with autism spectrum disorder (ASD), intellectual disability, and epilepsy. IQSEC2 is a postsynaptic density protein, localized on excitatory synapses as part of the NMDA receptor complex and is suggested to play a role in AMPA receptor trafficking and mediation of long-term depression. Here, we present brain-wide structural volumetric and functional connectivity characterization in a novel mouse model with a missense mutation in the IQ domain of IQSEC2 (A350V). Using high-resolution structural and functional MRI, we show that animals with the A350V mutation display increased whole-brain volume which was further found to be specific to the cerebral cortex and hippocampus. Moreover, using a data-driven approach we identify putative alterations in structure–function relations of the frontal, auditory, and visual networks in A350V mice. Examination of these alterations revealed an increase in functional connectivity between the anterior cingulate cortex and the dorsomedial striatum. We also show that corticostriatal functional connectivity is correlated with individual variability in social behavior only in A350V mice, as assessed using the three-chamber social preference test. Our results at the systems-level bridge the impact of previously reported changes in AMPA receptor trafficking to network-level disruption and impaired social behavior. Further, the A350V mouse model recapitulates similarly reported brain-wide changes in other ASD mouse models, with substantially different cellular-level pathologies that nonetheless result in similar brain-wide alterations, suggesting that novel therapeutic approaches in ASD that result in systems-level rescue will be relevant to IQSEC2 mutations.


Sign in / Sign up

Export Citation Format

Share Document