scholarly journals Ventromedial and dorsolateral prefrontal interactions underlie will to fight and die for a cause

2019 ◽  
Vol 14 (6) ◽  
pp. 569-577 ◽  
Author(s):  
Clara Pretus ◽  
Nafees Hamid ◽  
Hammad Sheikh ◽  
Ángel Gómez ◽  
Jeremy Ginges ◽  
...  

AbstractWillingness to fight and die (WFD) has been developed as a measure to capture willingness to incur costly sacrifices for the sake of a greater cause in the context of entrenched conflict. WFD measures have been repeatedly used in field studies, including studies on the battlefield, although their neurofunctional correlates remain unexplored. Our aim was to identify the neural underpinnings of WFD, focusing on neural activity and interconnectivity of brain areas previously associated with value-based decision-making, such as the ventromedial prefrontal cortex (vmPFC) and the dorsolateral prefrontal cortex (dlPFC). A sample of Pakistani participants supporting the Kashmiri cause was selected and invited to participate in an functional magnetic resonance (fMRI) paradigm where they were asked to convey their WFD for a series of values related to Islam and current politics. As predicted, higher compared to lower WFD was associated with increased ventromedial prefrontal activity and decreased dorsolateral activity, as well as lower connectivity between the vmPFC and the dlPFC. Our findings suggest that WFD more prominently relies on brain areas typically associated with subjective value (vmPFC) rather than integration of material costs (dlPFC) during decision-making, supporting the notion that decisions on costly sacrifices may not be mediated by cost-benefit computation.

2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Seung-Lark Lim ◽  
J. Bradley C. Cherry ◽  
Ann M. Davis ◽  
S. N. Balakrishnan ◽  
Oh-Ryeong Ha ◽  
...  

Abstract As children grow, they gradually learn how to make decisions independently. However, decisions like choosing healthy but less-tasty foods can be challenging for children whose self-regulation and executive cognitive functions are still maturing. We propose a computational decision-making process in which children estimate their mother’s choices for them as well as their individual food preferences. By employing functional magnetic resonance imaging during real food choices, we find that the ventromedial prefrontal cortex (vmPFC) encodes children’s own preferences and the left dorsolateral prefrontal cortex (dlPFC) encodes the projected mom’s choices for them at the time of children’s choice. Also, the left dlPFC region shows an inhibitory functional connectivity with the vmPFC at the time of children’s own choice. Our study suggests that in part, children utilize their perceived caregiver’s choices when making choices for themselves, which may serve as an external regulator of decision-making, leading to optimal healthy decisions.


2017 ◽  
Author(s):  
L. Deserno ◽  
R. Boehme ◽  
C. Mathys ◽  
T. Katthagen ◽  
J. Kaminski ◽  
...  

AbstractBackgroundReward-based decision-making is impaired in patients with schizophrenia (PSZ) as reflected by increased choice switching. The underlying cognitive and motivational processes as well as associated neural signatures remain unknown. Reinforcement Learning (RL) and hierarchical Bayesian learning account for choice switching in different ways. We hypothesized that enhanced choice switching, as seen in PSZ during reward-based decision-making, relates to higher-order beliefs about environmental volatility and examined the associated neural activity.Methods46 medicated PSZ and 43 healthy controls (HC) performed a reward-based decision-making task requiring flexible responses to changing action-outcome contingencies during functional Magnetic Resonance Imaging (fMRI). Detailed computational modeling of choice data was performed, including RL and the hierarchical Gaussian filter (HGF). Trajectories of learning from computational modeling informed the analysis of fMRI data.ResultsA three-level HGF accounted best for the observed choice data. This model revealed a heightened initial belief about environmental volatility and a stronger influence of volatility on lower-level learning of action-outcome contingencies in PSZ as compared to HC. This was replicated in an independent sample of non-medicated PSZ. Beliefs about environmental volatility were reflected by higher activity in dorsolateral prefrontal cortex of PSZ as compared to HC.ConclusionsOur study suggests that PSZ inferred the environment as overly volatile, which may explain increased choice switching. In PSZ, activity in dorsolateral prefrontal cortex was more strongly related to beliefs about environmental volatility. Our computational phenotyping approach may provide useful information to dissect clinical heterogeneity and could improve prediction of outcome.


Author(s):  
L Ceravolo ◽  
S Schaerlaeken ◽  
S Frühholz ◽  
D Glowinski ◽  
D Grandjean

Abstract Integrating and predicting the intentions and actions of others are critical components of social interactions, but the behavioral and neural bases of such mechanisms under altered perceptual conditions are poorly understood. In the present study, we recruited expert violinists and age-matched controls with no musical training and asked them to evaluate simplified dynamic stimuli of violinists playing in a piano or forte communicative intent while undergoing functional magnetic resonance imaging. We show that expertise is needed to successfully understand and evaluate communicative intentions in spatially and temporally altered visual representations of musical performance. Frontoparietal regions—such as the dorsolateral prefrontal cortex and the inferior parietal lobule and sulcus—and various subregions of the cerebellum—such as cerebellar lobules I-IV, V, VI, VIIb, VIIIa, X—are recruited in the process. Functional connectivity between these brain areas reveals widespread organization, particularly in the dorsolateral prefrontal cortex, inferior frontal gyrus, inferior parietal sulcus and in the cerebellum. This network may be essential to successfully assess communicative intent in ambiguous or complex visual scenes.


2020 ◽  
Author(s):  
Sihai Li ◽  
Christos Constantinidis ◽  
Xue-Lian Qi

ABSTRACTThe dorsolateral prefrontal cortex plays a critical role in spatial working memory and its activity predicts behavioral responses in delayed response tasks. Here we addressed whether this predictive ability extends to categorical judgments based on information retained in working memory, and is present in other brain areas. We trained monkeys in a novel, Match-Stay, Nonmatch-Go task, which required them to observe two stimuli presented in sequence with an intervening delay period between them. If the two stimuli were different, the monkeys had to saccade to the location of the second stimulus; if they were the same, they held fixation. Neurophysiological recordings were performed in areas 8a and 46 of the dlPFC and 7a and lateral intraparietal cortex (LIP) of the PPC. We hypothesized that random drifts causing the peak activity of the network to move away from the first stimulus location and towards the location of the second stimulus would result in categorical errors. Indeed, for both areas, when the first stimulus appeared in a neuron’s preferred location, the neuron showed significantly higher firing rates in correct than in error trials. When the first stimulus appeared at a nonpreferred location and the second stimulus at a preferred, activity in error trials was higher than in correct. The results indicate that the activity of both dlPFC and PPC neurons is predictive of categorical judgments of information maintained in working memory, and the magnitude of neuronal firing rate deviations is revealing of the contents of working memory as it determines performance.SIGNIFICANCE STATEMENTThe neural basis of working memory and the areas mediating this function is a topic of controversy. Persistent activity in the prefrontal cortex has traditionally been thought to be the neural correlate of working memory, however recent studies have proposed alternative mechanisms and brain areas. Here we show that persistent activity in both the dorsolateral prefrontal cortex and posterior parietal cortex predicts behavior in a working memory task that requires a categorical judgement. Our results offer support to the idea that a network of neurons in both areas act as an attractor network that maintains information in working memory, which informs behavior.


Sign in / Sign up

Export Citation Format

Share Document