scholarly journals Functional MRI reveals evidence of a self-positivity bias in the medial prefrontal cortex during the comprehension of social vignettes

2019 ◽  
Vol 14 (6) ◽  
pp. 613-621 ◽  
Author(s):  
Eric C Fields ◽  
Kirsten Weber ◽  
Benjamin Stillerman ◽  
Nathaniel Delaney-Busch ◽  
Gina R Kuperberg

Abstract A large literature in social neuroscience has associated the medial prefrontal cortex (mPFC) with the processing of self-related information. However, only recently have social neuroscience studies begun to consider the large behavioral literature showing a strong self-positivity bias, and these studies have mostly focused on its correlates during self-related judgments and decision-making. We carried out a functional MRI (fMRI) study to ask whether the mPFC would show effects of the self-positivity bias in a paradigm that probed participants’ self-concept without any requirement of explicit self-judgment. We presented social vignettes that were either self-relevant or non-self-relevant with a neutral, positive or negative outcome described in the second sentence. In previous work using event-related potentials, this paradigm has shown evidence of a self-positivity bias that influences early stages of semantically processing incoming stimuli. In the present fMRI study, we found evidence for this bias within the mPFC: an interaction between self-relevance and valence, with only positive scenarios showing a self vs other effect within the mPFC. We suggest that the mPFC may play a role in maintaining a positively biased self-concept and discuss the implications of these findings for the social neuroscience of the self and the role of the mPFC.

2016 ◽  
Vol 37 (7) ◽  
pp. 2512-2527 ◽  
Author(s):  
Weihua Zhao ◽  
Shuxia Yao ◽  
Qin Li ◽  
Yayuan Geng ◽  
Xiaole Ma ◽  
...  

1999 ◽  
Vol 11 (6) ◽  
pp. 598-609 ◽  
Author(s):  
Charan Ranganath ◽  
Ken A. Paller

Previous neuropsychological and neuroimaging results have implicated the prefrontal cortex in memory retrieval, although its precise role is unclear. In the present study, we examined patterns of brain electrical activity during retrieval of episodic and semantic memories. In the episodic retrieval task, participants retrieved autobiographical memories in response to event cues. In the semantic retrieval task, participants generated exemplars in response to category cues. Novel sounds presented intermittently during memory retrieval elicited a series of brain potentials including one identifiable as the P3a potential. Based on prior research linking P3a with novelty detection and with the frontal lobes, we predicted that P3a would be reduced to the extent that novelty detection and memory retrieval interfere with each other. Results during episodic and semantic retrieval tasks were compared to results during a task in which subjects attended to the auditory stimuli. P3a amplitudes were reduced during episodic retrieval, particularly at right lateral frontal scalp locations. A similar but less lateralized pattern of frontal P3a reduction was observed during semantic retrieval. These findings support the notion that the right prefrontal cortex is engaged in the service of memory retrieval, particularly for episodic memories.


2003 ◽  
Vol 53 (3) ◽  
pp. 211-215 ◽  
Author(s):  
K.Luan Phan ◽  
Stephan F Taylor ◽  
Robert C Welsh ◽  
Laura R Decker ◽  
Douglas C Noll ◽  
...  

2021 ◽  
pp. 372-419
Author(s):  
Richard E. Passingham

This chapter and the next one consider how to account for the astonishing difference in intelligence between humans and our nearest living ancestors, the great apes. An integrated system that includes the dorsal prefrontal cortex and the parietal association cortex is activated when subjects attempt tests of non-verbal intelligence. It has been suggested that this system might act as a ‘multiple-demand system’ or ‘global workspace’ that can deal with any problem. However, closer examination suggests that the tasks used to support this claim have in common that they involve abstract sequences. These problems can be solved by visual imagery alone. But humans also have the advantage that they also have access to a propositional code. This means that they can solve problems that involve verbal reasoning, as well as being able to form detailed plans for the future. They can also form explicit judgements about themselves, including their perceptions, actions, and memories, and this means that they can represent themselves as individuals. The representation of the self depends in part on tissue in the medial prefrontal cortex (PF).


2015 ◽  
Vol 349 (1-2) ◽  
pp. 202-208 ◽  
Author(s):  
Gabor Perlaki ◽  
Gergely Orsi ◽  
Attila Schwarcz ◽  
Peter Bodi ◽  
Eniko Plozer ◽  
...  

2008 ◽  
Vol 21 (2) ◽  
pp. 112-127 ◽  
Author(s):  
Ludovico Minati ◽  
Cristina Rosazza ◽  
Ileana Zucca ◽  
Ludovico D’Incerti ◽  
Vidmer Scaioli ◽  
...  

2019 ◽  
Vol 116 (9) ◽  
pp. 3799-3804 ◽  
Author(s):  
Tingting Sun ◽  
Zihua Song ◽  
Yanghua Tian ◽  
Wenbo Tian ◽  
Chunyan Zhu ◽  
...  

Obsessive-compulsive disorder (OCD) affects ∼1 to 3% of the world’s population. However, the neural mechanisms underlying the excessive checking symptoms in OCD are not fully understood. Using viral neuronal tracing in mice, we found that glutamatergic neurons from the basolateral amygdala (BLAGlu) project onto both medial prefrontal cortex glutamate (mPFCGlu) and GABA (mPFCGABA) neurons that locally innervate mPFCGlu neurons. Next, we developed an OCD checking mouse model with quinpirole-induced repetitive checking behaviors. This model demonstrated decreased glutamatergic mPFC microcircuit activity regulated by enhanced BLAGlu inputs. Optical or chemogenetic manipulations of this maladaptive circuitry restored the behavioral response. These findings were verified in a mouse functional magnetic resonance imaging (fMRI) study, in which the BLA–mPFC functional connectivity was increased in OCD mice. Together, these findings define a unique BLAGlu→mPFCGABA→Glu circuit that controls the checking symptoms of OCD.


2014 ◽  
Vol 10 (8) ◽  
pp. 1054-1060 ◽  
Author(s):  
Claudia Civai ◽  
Carlo Miniussi ◽  
Raffaella I. Rumiati

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Stéphane Potvin ◽  
Andràs Tikàsz ◽  
Stéphane Richard-Devantoy ◽  
Ovidiu Lungu ◽  
Alexandre Dumais

Despite the high prevalence of suicidal ideas/attempts in schizophrenia, only a handful of neuroimaging studies have examined the neurobiological differences associated with suicide risk in this population. The main objective of the current exploratory study is to examine the neurofunctional correlates associated with a history of suicide attempt in schizophrenia, using a risky decision-making task, in order to show alterations in brain reward regions in this population. Thirty-two male outpatients with schizophrenia were recruited: 13 patients with (SCZ + S) and 19 without a history of suicidal attempt (SCZ − S). Twenty-one healthy men with no history of mental disorders or suicidal attempt/idea were also recruited. Participants were scanned using fMRI while performing the Balloon Analogue Risk Task. A rapid event-related fMRI paradigm was used, separating decision and outcome events, and the explosion probabilities were included as parametric modulators. The most important finding of this study is that SCZ + S patients had reduced activations of the medial prefrontal cortex during the success outcome event (with parametric modulation), relative to both SCZ − S patients and controls, as illustrated by a spatial conjunction analysis. These exploratory results suggest that a history of suicidal attempt in schizophrenia is associated with blunted brain reward activity during emotional decision-making.


Sign in / Sign up

Export Citation Format

Share Document