scholarly journals Effects of Toxoplasma gondii Infection on the Brain

2007 ◽  
Vol 33 (3) ◽  
pp. 745-751 ◽  
Author(s):  
V. B. Carruthers ◽  
Y. Suzuki
2017 ◽  
Vol 1 (6) ◽  
pp. 563-572 ◽  
Author(s):  
Pierre-Mehdi Hammoudi ◽  
Dominique Soldati-Favre

Typically illustrating the ‘manipulation hypothesis’, Toxoplasma gondii is widely known to trigger sustainable behavioural changes during chronic infection of intermediate hosts to enhance transmission to its feline definitive hosts, ensuring survival and dissemination. During the chronic stage of infection in rodents, a variety of neurological dysfunctions have been unravelled and correlated with the loss of cat fear, among other phenotypic impacts. However, the underlying neurological alteration(s) driving these behavioural modifications is only partially understood, which makes it difficult to draw more than a correlation between T. gondii infection and changes in brain homeostasis. Moreover, it is barely known which among the brain regions governing fear and stress responses are preferentially affected during T. gondii infection. Studies aiming at an in-depth dissection of underlying molecular mechanisms occurring at the host and parasite levels will be discussed in this review. Addressing this reminiscent topic in the light of recent technical progress and new discoveries regarding fear response, olfaction and neuromodulator mechanisms could contribute to a better understanding of this complex host–parasite interaction.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Andrew L. Garfoot ◽  
Gary M. Wilson ◽  
Joshua J. Coon ◽  
Laura J. Knoll

Abstract Background The protozoan pathogen Toxoplasma gondii has the unique ability to develop a chronic infection in the brain of its host by transitioning from the fast growing tachyzoite morphology to latent bradyzoite morphology. A hallmark of the bradyzoite is the development of neuronal cysts that are resilient against host immune response and current therapeutics. The bradyzoite parasites within the cyst have a carbohydrate and protein-rich wall and a slow-replication cycle, allowing them to remain hidden from the host. The intracellular, encysted lifestyle of T. gondii has made them recalcitrant to molecular analysis in vivo. Results Here, we detail the results from transcriptional and proteomic analyses of bradyzoite-enriched fractions isolated from mouse brains infected with T. gondii over a time course of 21 to 150 days. The enrichment procedure afforded consistent identification of over 2000 parasitic peptides from the mixed-organism sample, representing 366 T. gondii proteins at 28, 90, and 120 day timepoints. Deep sequencing of transcripts expressed during these three timepoints revealed that a subpopulation of genes that are transcriptionally expressed at a high level. Approximately one-third of these transcripts are more enriched during bradyzoite conditions compared to tachyzoites and approximately half are expressed at similar levels during each phase. The T. gondii transcript which increased the most over the course of chronic infection, sporoAMA1, shows stage specific isoform expression of the gene. Conclusions We have expanded the transcriptional profile of in vivo bradyzoites to 120 days post-infection and provided the first in vivo proteomic profile of T. gondii bradyzoites. The RNA sequencing depth of in vivo bradyzoite T. gondii was over 250-fold greater than previous reports and allowed us to identify low level transcripts and a novel bradyzoite-specific isoform of sporoAMA1.


Immunobiology ◽  
2016 ◽  
Vol 221 (10) ◽  
pp. 1169
Author(s):  
Daria Briukhovetska ◽  
Fabian Mey ◽  
Birte Ohm ◽  
Kasper Hoebe ◽  
Julio Aliberti ◽  
...  

2020 ◽  
Author(s):  
Samantha J. Batista ◽  
Katherine M. Still ◽  
David Johanson ◽  
Jeremy A. Thompson ◽  
Carleigh A. O’Brien ◽  
...  

AbstractMicroglia, the resident immune cells of the brain parenchyma, are thought to be first-line defenders against CNS infections. We sought to identify specific roles of microglia in the control of the eukaryotic parasite Toxoplasma gondii, an opportunistic infection that can cause severe neurological disease. In order to identify the specific function of microglia in the brain during infection, we sorted microglia and infiltrating myeloid cells from infected microglia reporter mice. Using RNA-sequencing, we find strong NF-κB and inflammatory cytokine signatures overrepresented in blood-derived macrophages versus microglia. Interestingly, we also find that IL-1α is enriched in microglia and IL-1β in macrophages, which was also evident at the protein level. We find that mice lacking IL-1R1 or IL-1α, but not IL-1β, have impaired parasite control and immune cell infiltration specifically within the brain. Further, by sorting purified populations from infected brains, we show that microglia, not peripheral myeloid cells, release IL-1α ex vivo. Finally, using knockout mice as well as chemical inhibition, we show that ex vivo IL-1α release is gasdermin-D dependent, and that gasdermin-D and caspase-1/11 deficient mice show deficits in immune infiltration into the brain and parasite control. These results demonstrate that microglia and macrophages are differently equipped to propagate inflammation, and that in chronic T. gondii infection, microglia specifically can release the alarmin IL-1α, a cytokine that promotes neuroinflammation and parasite control.


Author(s):  
Carlos S. Subauste

Toxoplasma gondii is an obligate intracellular protozoan that can cause encephalitis and retinitis in humans. The success of T. gondii as a pathogen depends in part on its ability to form an intracellular niche (parasitophorous vacuole) that allows protection from lysosomal degradation and parasite replication. The parasitophorous vacuole can be targeted by autophagy or by autophagosome-independent processes triggered by autophagy proteins. However, T. gondii has developed many strategies to preserve the integrity of the parasitophorous vacuole. Here, we review the interaction between T. gondii, autophagy, and autophagy proteins and expand on recent advances in the field, including the importance of autophagy in the regulation of invasion of the brain and retina by the parasite. We discuss studies that have begun to explore the potential therapeutic applications of the knowledge gained thus far.


2019 ◽  
Author(s):  
Andrew Garfoot ◽  
Gary Wilson ◽  
Joshua Coon ◽  
Laura Knoll

Abstract Background : The protozoan pathogen Toxoplasma gondii has the unique ability to develop a chronic infection in the brain of its host by transitioning from the fast growing tachyzoite morphology to latent bradyzoite morphology. A hallmark of the bradyzoite is the development of neuronal cysts that are resilient against host immune response and current therapeutics. The bradyzoite parasites within the cyst have a carbohydrate and protein-rich wall and a slow-replication cycle, allowing them to remain hidden from the host. The intracellular, encysted lifestyle of T. gondii has made them recalcitrant to molecular analysis in vivo . Results : Here, we detail the results from transcriptional and proteomic analyses of bradyzoite-enriched fractions isolated from mouse brains infected with T. gondii over a time course of 21 to 150 days. The enrichment procedure afforded consistent identification of over 2,000 parasitic peptides from the mixed-organism sample, representing 366 T. gondii proteins at 28, 90, and 120 day timepoints. Deep sequencing of transcripts expressed during these three timepoints revealed that a subpopulation of genes that are transcriptionally expressed at a high level. Approximately one-third of these transcripts are more enriched during bradyzoite conditions compared to tachyzoites and approximately half are expressed at similar levels during each phase. The T. gondii transcript which increased the most over the course of chronic infection, sporoAMA1, shows stage specific isoform expression of the gene. Conclusions : We have expanded the transcriptional profile of in vivo bradyzoites to 120 days post-infection and provided the first in vivo proteomic profile of T. gondii bradyzoites. The RNA sequencing depth of in vivo bradyzoite T. gondii was over 250-fold greater than previous reports and allowed us to identify low level transcripts and a novel bradyzoite-specific isoform of sporoAMA1.


2019 ◽  
Author(s):  
Andrew Garfoot ◽  
Gary Wilson ◽  
Joshua Coon ◽  
Laura Knoll

Abstract Background : The protozoan pathogen Toxoplasma gondii has the unique ability to develop a chronic infection in the brain of its host by transitioning from the fast growing tachyzoite morphology to latent bradyzoite morphology. A hallmark of the bradyzoite is the development of neuronal cysts that are resilient against host immune response and current therapeutics. The bradyzoite parasites within the cyst have a carbohydrate and protein-rich wall and a slow-replication cycle, allowing them to remain hidden from the host. The intracellular, encysted lifestyle of T. gondii has made them recalcitrant to molecular analysis in vivo . Results : Here, we detail the results from transcriptional and proteomic analyses of bradyzoite-enriched fractions isolated from mouse brains infected with T. gondii over a time course of 21 to 150 days. The enrichment procedure afforded consistent identification of over 2,000 parasitic peptides from the mixed-organism sample, representing 366 T. gondii proteins at 28, 90, and 120 day timepoints. Deep sequencing of transcripts expressed during these three timepoints revealed that a subpopulation of genes that are transcriptionally expressed at a high level. Approximately one-third of these transcripts are more enriched during bradyzoite conditions compared to tachyzoites and approximately half are expressed at similar levels during each phase. The T. gondii transcript which increased the most over the course of chronic infection, sporoAMA1, shows stage specific isoform expression of the gene. Conclusions : We have expanded the transcriptional profile of in vivo bradyzoites to 120 days post-infection and provided the first in vivo proteomic profile of T. gondii bradyzoites. The RNA sequencing depth of in vivo bradyzoite T. gondii was over 250-fold greater than previous reports and allowed us to identify low level transcripts and a novel bradyzoite-specific isoform of sporoAMA1.


Sign in / Sign up

Export Citation Format

Share Document