scholarly journals Gasdermin-D-dependent IL-1α release from microglia promotes protective immunity during chronic Toxoplasma gondii infection

2020 ◽  
Author(s):  
Samantha J. Batista ◽  
Katherine M. Still ◽  
David Johanson ◽  
Jeremy A. Thompson ◽  
Carleigh A. O’Brien ◽  
...  

AbstractMicroglia, the resident immune cells of the brain parenchyma, are thought to be first-line defenders against CNS infections. We sought to identify specific roles of microglia in the control of the eukaryotic parasite Toxoplasma gondii, an opportunistic infection that can cause severe neurological disease. In order to identify the specific function of microglia in the brain during infection, we sorted microglia and infiltrating myeloid cells from infected microglia reporter mice. Using RNA-sequencing, we find strong NF-κB and inflammatory cytokine signatures overrepresented in blood-derived macrophages versus microglia. Interestingly, we also find that IL-1α is enriched in microglia and IL-1β in macrophages, which was also evident at the protein level. We find that mice lacking IL-1R1 or IL-1α, but not IL-1β, have impaired parasite control and immune cell infiltration specifically within the brain. Further, by sorting purified populations from infected brains, we show that microglia, not peripheral myeloid cells, release IL-1α ex vivo. Finally, using knockout mice as well as chemical inhibition, we show that ex vivo IL-1α release is gasdermin-D dependent, and that gasdermin-D and caspase-1/11 deficient mice show deficits in immune infiltration into the brain and parasite control. These results demonstrate that microglia and macrophages are differently equipped to propagate inflammation, and that in chronic T. gondii infection, microglia specifically can release the alarmin IL-1α, a cytokine that promotes neuroinflammation and parasite control.

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii219-ii219
Author(s):  
Ghaidan Shamsan ◽  
Chao Liu ◽  
Brooke Braman ◽  
Susan Rathe ◽  
Aaron Sarver ◽  
...  

Abstract In Glioblastoma (GBM), tumor spreading is driven by tumor cells’ ability to infiltrate healthy brain parenchyma, which prevents complete surgical resection and contributes to tumor recurrence. GBM molecular subtypes, classical, proneural and mesenchymal, were shown to strongly correlate with specific genetic alterations (Mesenchymal: NF1; Classical: EGFRVIII; Proneural: PDGFRA). Here we tested the hypothesis that a key mechanistic difference between GBM molecular subtypes is that proneural cells are slow migrating and mesenchymal cells are fast migrating. Using Sleeping Beauty transposon system, immune-competent murine brain tumors were induced by SV40-LgT antigen in combination with either NRASG12V (NRAS) or PDGFB (PDGF) overexpression. Cross-species transcriptomic analysis revealed NRAS and PDGF-driven tumors correlate with human mesenchymal and proneural GBM, respectively. Similar to human GBM, CD44 expression was higher in NRAS tumors and, consistent with migration simulations of varying CD44 levels, ex vivo brain slice live imaging showed NRAS tumors cells migrate faster than PDGF tumors cells (random motility coefficient = 30µm2/hr vs. 2.5µm2/hr, p < 0.001). Consistent with CD44 function as an adhesion molecule, migration phenotype was independent of the tumor microenvironment. NRAS and human PDX/MES tumor cells were found to migrate faster and have larger cell spread area than PDGF and human PDX/PN tumors cells, respectively, in healthy mouse brain slices. Furthermore, traction force microscopy revealed NRAS tumor cells generate larger traction forces than PDGF tumors cells which further supports our theoretical mechanism driving glioma migration. Despite increased migration, NRAS cohort had better survival than PDGF which was attributed to enhanced antitumoral immune response in NRAS tumors, consistent with increased immune cell infiltration found in human mesenchymal GBM. Overall our work identified a potentially actionable difference in migration mechanics between GBM subtypes and establishes an integrated biophysical modeling and experimental approach to mechanically parameterize and simulate distinct molecular subtypes in preclinical models of cancer.


2017 ◽  
Vol 1 (6) ◽  
pp. 563-572 ◽  
Author(s):  
Pierre-Mehdi Hammoudi ◽  
Dominique Soldati-Favre

Typically illustrating the ‘manipulation hypothesis’, Toxoplasma gondii is widely known to trigger sustainable behavioural changes during chronic infection of intermediate hosts to enhance transmission to its feline definitive hosts, ensuring survival and dissemination. During the chronic stage of infection in rodents, a variety of neurological dysfunctions have been unravelled and correlated with the loss of cat fear, among other phenotypic impacts. However, the underlying neurological alteration(s) driving these behavioural modifications is only partially understood, which makes it difficult to draw more than a correlation between T. gondii infection and changes in brain homeostasis. Moreover, it is barely known which among the brain regions governing fear and stress responses are preferentially affected during T. gondii infection. Studies aiming at an in-depth dissection of underlying molecular mechanisms occurring at the host and parasite levels will be discussed in this review. Addressing this reminiscent topic in the light of recent technical progress and new discoveries regarding fear response, olfaction and neuromodulator mechanisms could contribute to a better understanding of this complex host–parasite interaction.


2021 ◽  
Author(s):  
Oscar A. Mendez ◽  
Emiliano Flores Machado ◽  
Jing Lu ◽  
Anita A. Koshy

AbstractToxoplasma gondii is an intracellular parasite that causes a long-term latent infection of neurons. Using a custom MATLAB-based mapping program in combination with a mouse model that allows us to permanently mark neurons injected with parasite proteins, we found that Toxoplasma-injected neurons (TINs) are heterogeneously distributed in the brain, primarily localizing to the cortex followed by the striatum. Using immunofluorescence co-localization assays, we determined that cortical TINs are commonly (>50%) excitatory neurons (FoxP2+) and that striatal TINs are often (>65%) medium spiny neurons (MSNs) (FoxP2+). As MSNs have highly characterized electrophysiology, we used ex vivo slices from infected mice to perform single neuron patch-clamping on striatal TINs and neighboring uninfected MSNs (bystander MSNs). These studies demonstrated that TINs have highly abnormal electrophysiology, while the electrophysiology of bystander MSNs was akin to that of MSNs from uninfected mice. Collectively, these data offer new neuroanatomic and electrophysiologic insights into CNS toxoplasmosis.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Pedram Honarpisheh ◽  
Juneyoung Lee ◽  
Anik Banerjee ◽  
Maria P. Blasco-Conesa ◽  
Parisa Honarpisheh ◽  
...  

Abstract Background The ability to distinguish resident microglia from infiltrating myeloid cells by flow cytometry-based surface phenotyping is an important technique for examining age-related neuroinflammation. The most commonly used surface markers for the identification of microglia include CD45 (low-intermediate expression), CD11b, Tmem119, and P2RY12. Methods In this study, we examined changes in expression levels of these putative microglia markers in in vivo animal models of stroke, cerebral amyloid angiopathy (CAA), and aging as well as in an ex vivo LPS-induced inflammation model. Results We demonstrate that Tmem119 and P2RY12 expression is evident within both CD45int and CD45high myeloid populations in models of stroke, CAA, and aging. Interestingly, LPS stimulation of FACS-sorted adult microglia suggested that these brain-resident myeloid cells can upregulate CD45 and downregulate Tmem119 and P2RY12, making them indistinguishable from peripherally derived myeloid populations. Importantly, our findings show that these changes in the molecular signatures of microglia can occur without a contribution from the other brain-resident or peripherally sourced immune cells. Conclusion We recommend future studies approach microglia identification by flow cytometry with caution, particularly in the absence of the use of a combination of markers validated for the specific neuroinflammation model of interest. The subpopulation of resident microglia residing within the “infiltrating myeloid” population, albeit small, may be functionally important in maintaining immune vigilance in the brain thus should not be overlooked in neuroimmunological studies.


2002 ◽  
Vol 227 (8) ◽  
pp. 609-615 ◽  
Author(s):  
Weihong Pan ◽  
Beka Solomon ◽  
Lawrence M. Maness ◽  
Abba J. Kastin

Amyloid-β peptides (Aβ) play an important role in the pathophysiology of dementia of the Alzheimer's type and in amyloid angiopathy. Aβ outside the CNS could contribute to plaque formation in the brain where its entry would involve interactions with the blood-brain barrier (BBB). Effective antibodies to Aβ have been developed in an effort to vaccinate against Alzheimer's disease. These antibodies could interact with Aβ in the peripheral blood, block the passage of Aβ across the BBB, or prevent Aβ deposition within the CNS. To determine whether the blocking antibodies act at the BBB level, we examined the influx of radiolabeled Aβ (125I-Aβ1-40) into the brain after ex-vivo incubation with the antibodies. Antibody mAb3D6 (élan Company) reduced the blood-to-brain influx of Aβ after iv bolus injection. It also significantly decreased the accumulation of Aβ in brain parenchyma. To confirm the in-vivo study and examine the specificity of mAb3D6, in-situ brain perfusion in serum-free buffer was performed after incubation of 125I-Aβ1-40 with another antibody mAbmc1 (DAKO Company). The presence of mAbmc1 also caused significant reduction of the influx of Aβ into the brain after perfusion. Therefore, effective antibodies to Aβ can reduce the influx of Aβ1-40 into the brain.


Neurosurgery ◽  
1979 ◽  
Vol 4 (2) ◽  
pp. 115-124 ◽  
Author(s):  
Paul R. Cooper ◽  
Kenneth Maravilla ◽  
Joel Kirkpatrick ◽  
Sarah F. Moody ◽  
Frederick H. Sklar ◽  
...  

Abstract The computerized tomographic (CT) scan has revolutionized the management of cerebral trauma. Nevertheless, visualization of traumatically induced lesions of the brain stem by the CT scanner remains difficult. Seven patients with autopsy or CT evidence of brain stem hemorrhage were identified over a 1-year period. In six of these patients, brain stem hemorrhage could be defined by CT scan. As part of a prospective study of CT changes after head injury, we performed serial CT scans on six of the seven patients. Clinical experience shows that timing is important for identification of these lesions and that inability to visualize brain stem hematomas may occur because of the development of hematomas after CT scanning, evolution of hemorrhagic lesions that makes them isodense with the surrounding brain stem, patient movement, and technical factors such as the partial volume effect. Experimental injection of fresh blood into the pons and midbrain of cadavers shows that lesions as small as 0.1 ml in volume may be visualized by ex vivo thin section CT scanning techniques. However, the character and anatomical configuration of the hemorrhage may be as important in determining CT visualization as is the volume of the hemorrhage. For example, a hematoma displacing the brain parenchyma was visualized, but a similar-sized small hemorrhage that had diffused through the brain stem tissues was not. Although many of the experimentally placed lesions extended over a rostral-caudal length of 15 mm or more in the brain stem, no lesion was seen on more than three thin section scans. This is explained by the presence of lesions that, although extensive in a rostral-caudal direction, had relatively small cross sectional areas available for identification by the CT scanner. The small size of traumatic lesions of the brain stem and their proximity to bony structures at the base of the skull are not insurmountable obstacles to visualization of brain stem hemorrhages. Serial scanning and the application of thin section computed tomography will lead to identification of most of these lesions.


2007 ◽  
Vol 33 (3) ◽  
pp. 745-751 ◽  
Author(s):  
V. B. Carruthers ◽  
Y. Suzuki

2021 ◽  
Author(s):  
Jacco van Rheenen ◽  
Elly Hol ◽  
Claire Vennin ◽  
Jessy van Asperen ◽  
Rebeca Uceda-Castro ◽  
...  

Glioma is the most common form of malignant primary brain tumours in adults. Their highly invasive nature makes the disease incurable to date, emphasizing the importance of better understanding the mechanisms driving glioma invasion. Glial fibrillary acidic protein (GFAP) is an intermediate filament protein that is characteristic for astrocyte- and neural stem cell-derived gliomas. Glioma malignancy is associated with changes in GFAP alternative splicing, as the canonical isoform GFAPα is downregulated in higher-grade tumours, leading to increased dominance of the GFAPδ isoform in the network. In this study, we used intravital imaging and an ex vivo brain slice invasion model. We show that the GFAPδ and GFAPα isoforms differentially regulate the tumour dynamics of glioma cells. Depletion of either isoform increases the migratory capacity of glioma cells. Remarkably, GFAPδ-depleted cells migrate randomly through the brain tissue, whereas GFAPα-depleted cells show a directionally persistent invasion into the brain parenchyma. This study shows that distinct compositions of the GFAP-network lead to specific migratory dynamics and behaviours of gliomas.


Sign in / Sign up

Export Citation Format

Share Document