scholarly journals 0066 DIURNAL REPEATED PHYSICAL EXERCISE PROMOTES SLOW WAVE ACTIVITY AND FAST-SIGMA POWER IN ACCORDANCE WITH CHANGE OF DISTAL PROXIMAL SKIN TEMPERATURE GRADIENT AND CORE BODY TEMPERATURE DURING NOCTURNAL SLEEP

SLEEP ◽  
2017 ◽  
Vol 40 (suppl_1) ◽  
pp. A25-A25
Author(s):  
S Aritake-Okada ◽  
K Tanabe ◽  
Y Mochizuki ◽  
R Ochiai ◽  
M Hibi ◽  
...  
2019 ◽  
Vol 127 (1) ◽  
pp. 168-177 ◽  
Author(s):  
Sayaka Aritake-Okada ◽  
Kosuke Tanabe ◽  
Yoshiko Mochizuki ◽  
Ryuji Ochiai ◽  
Masanobu Hibi ◽  
...  

The effects of exercise on sleep have been explored from various perspectives, but little is known about how the effects of acute exercise on sleep are produced through physiological functions. We used a protocol of multiple daytime sessions of moderate-intensity aerobic exercise and examined the subsequent effects on sleep structure, core body temperature (CBT), distal-proximal skin temperature gradient (DPG), and subjective parameters. Fourteen healthy men who did not exercise regularly were evaluated under the baseline (no exercise) and exercise conditions on a within-subject crossover basis. Under the exercise condition, each participant performed a 40-min aerobic workout at 40% of maximal oxygen intake, four times between morning and early evening. We observed a 33% increase in slow-wave sleep (SWS; P = 0.005), as well as increases in slow-wave activity (SWA; P = 0.026), the fast-sigma power/SWA ratio ( P = 0.005), and subjective sleep depth and restorativeness the following morning. Moreover, both CBT and the DPG increased during sleep after exercise ( P = 0.021 and P = 0.047, respectively). Regression analysis identified an increased nocturnal DPG during sleep after exercise as a factor in the increase in SWA. The fast-sigma/SWA ratio correlated with CBT. The performance of acute exercise promotes SWS with nocturnal elevation in the DPG. Both CBT and fast-sigma power may play a role in the specific physiological status of the body after exercise.NEW & NOTEWORTHY We used multiple daytime sessions of moderate-intensity aerobic exercise to examine the effects on the sleep structure, core body temperature (CBT), distal-proximal skin temperature gradient (DPG), and subjective parameters. Significant increases in slow-wave activity (SWA), CBT, DPG, fast-sigma power, and subjective parameters were observed during the night and the following morning. Nocturnal DPG is a factor in the increased SWA.


2016 ◽  
Vol 96 (5) ◽  
pp. 650-658 ◽  
Author(s):  
Coen C.W.G. Bongers ◽  
Thijs M.H. Eijsvogels ◽  
Ilse J.W. van Nes ◽  
Maria T.E. Hopman ◽  
Dick H.J. Thijssen

Background People with spinal cord injury (SCI) have an altered afferent input to the thermoregulatory center, resulting in a reduced efferent response (vasomotor control and sweating capacity) below the level of the lesion. Consequently, core body temperature rises more rapidly during exercise in individuals with SCI compared with people who are able-bodied. Cooling strategies may reduce the thermophysiological strain in SCI. Objective The aim of this study was to examine the effects of a cooling vest on the core body temperature response of people with a thoracic SCI during submaximal exercise. Methods Ten men (mean age=44 years, SD=11) with a thoracic lesion (T4–T5 or below) participated in this randomized crossover study. Participants performed two 45-minute exercise bouts at 50% maximal workload (ambient temperature 25°C), with participants randomized to a group wearing a cooling vest or a group wearing no vest (separate days). Core body temperature and skin temperature were continuously measured, and thermal sensation was assessed every 3 minutes. Results Exercise resulted in an increased core body temperature, skin temperature, and thermal sensation, whereas cooling did not affect core body temperature. The cooling vest effectively decreased skin temperature, increased the core-to-trunk skin temperature gradient, and tended to lower thermal sensation compared with the control condition. Limitations The lack of differences in core body temperature among conditions may be a result of the relative moderate ambient temperature in which the exercise was performed. Conclusions Despite effectively lowering skin temperature and increasing the core-to-trunk skin temperature gradient, there was no impact of the cooling vest on the exercise-induced increase in core body temperature in men with low thoracic SCI.


1984 ◽  
Vol 57 (6) ◽  
pp. 1738-1741 ◽  
Author(s):  
T. G. Waldrop ◽  
D. E. Millhorn ◽  
F. L. Eldridge ◽  
L. E. Klingler

Respiratory responses to increased skin temperatures were recorded in anesthetized cerebrate and in unanesthetized decerebrate cats. All were vagotomized, glomectomized, and paralyzed. Core body temperature and end-tidal Pco2 were kept constant with servoncontrollers. Stimulation of cutaneous nociceptors by heating the skin to 46 degrees C caused respiration to increase in both cerebrate and decerebrate cats. An even larger facilitation of respiration occurred when the skin temperature was elevated to 51 degrees C. However, respiration did not increase in either group of cats when the skin was heated to 41 degrees C to activate cutaneous warm receptors. The phenomenon of sensitization of nociceptors was observed. Spinal transection prevented all the respiratory responses to cutaneous heating. We conclude that noxious, but not nonnoxious, increases in skin temperature cause increases in respiratory output.


2017 ◽  
Vol 12 (5) ◽  
pp. 662-667 ◽  
Author(s):  
Matthijs T.W. Veltmeijer ◽  
Dineke Veeneman ◽  
Coen C.C.W. Bongers ◽  
Mihai G. Netea ◽  
Jos W. van der Meer ◽  
...  

Purpose:Exercise increases core body temperature (TC) due to metabolic heat production. However, the exercise-induced release of inflammatory cytokines including interleukin-6 (IL-6) may also contribute to the rise in TC by increasing the hypothalamic temperature set point. This study investigated whether the exercise-induced increase in TC is partly caused by an altered hypothalamic temperature set point.Methods:Fifteen healthy, active men age 36 ± 14 y were recruited. Subjects performed submaximal treadmill exercise in 3 randomized test conditions: (1) 400 mg ibuprofen and 1000 mg acetaminophen (IBU/APAP), (2) 1000 mg acetaminophen (APAP), and (3) a control condition (CTRL). Acetaminophen and ibuprofen were used to block the effect of IL-6 at a central and peripheral level, respectively. TC, skin temperature, and heart rate were measured continuously during the submaximal exercise tests.Results:Baseline values of TC, skin temperature, and heart rate did not differ across conditions. Serum IL-6 concentrations increased in all 3 conditions. A significantly lower peak TC was observed in IBU/APAP (38.8°C ± 0.4°C) vs CTRL (39.2°C ± 0.5°C, P = .02) but not in APAP (38.9°C ± 0.4°C) vs CTRL. Similarly, a lower ΔTC was observed in IBU/APAP (1.7°C ± 0.3°C) vs CTRL (2.0°C ± 0.5°C, P < .02) but not in APAP (1.7°C ± 0.5°C) vs CTRL. No differences were observed in skin temperature and heart-rate responses across conditions.Conclusions:The combined administration of acetaminophen and ibuprofen resulted in an attenuated increase in TC during exercise compared with a CTRL. This observation suggests that a prostaglandin-E2-induced elevated hypothalamic temperature set point may contribute to the exercise-induced rise in TC.


2020 ◽  
Vol 87 (9) ◽  
pp. S251
Author(s):  
Esther Blessing ◽  
Ankit Paresh ◽  
Arleener Turner ◽  
Andrew Varga ◽  
David Rapoport ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
pp. 103-109
Author(s):  
Gavin Cowper ◽  
Martin Barwood ◽  
Stuart Goodall

Purpose: Rowers can be in marshaling areas for up to 20 to 25 min before the start of a race, which likely negates any benefits of an active warm-up, especially in cold environments. It is unknown if using a heated jacket following a standardized rowing warm-up can improve 2000-m rowing performance. Methods: On 2 separate occasions, 10 trained male rowers completed a standardized rowing warm-up, followed by 25 min of passive rest before a 2000-m rowing time trial on a rowing ergometer. Throughout the passive rest, the participants wore either a standardized tracksuit top (CON) or an externally heated jacket (HEAT). The trials, presented in a randomized crossover fashion, were performed in a controlled environment (temperature 8°C, humidity 50%). Rowing time-trial performance, core body temperature, and mean skin temperature, along with perceptual variables, were measured. Results: During the 25-min period, core body temperature increased in HEAT and decreased in CON (Δ0.54°C [0.74°C] vs −0.93°C [1.14°C]; P = .02). Additionally, mean skin temperature (30.22°C [1.03°C] vs 28.86°C [1.07°C]) was higher in HEAT versus CON (P < .01). In line with the physiological data, the perceptual data confirmed that participants were more comfortable in HEAT versus CON, and subsequently, rowing performance was improved in HEAT compared with CON (433.1 [12.7] s vs 437.9 [14.4] s, P < .01). Conclusion: The data demonstrate that an upper-body external heating garment worn following a warm-up can improve rowing performance in a cool environment.


Sign in / Sign up

Export Citation Format

Share Document