Respiratory responses to noxious and nonnoxious heating of skin in cats

1984 ◽  
Vol 57 (6) ◽  
pp. 1738-1741 ◽  
Author(s):  
T. G. Waldrop ◽  
D. E. Millhorn ◽  
F. L. Eldridge ◽  
L. E. Klingler

Respiratory responses to increased skin temperatures were recorded in anesthetized cerebrate and in unanesthetized decerebrate cats. All were vagotomized, glomectomized, and paralyzed. Core body temperature and end-tidal Pco2 were kept constant with servoncontrollers. Stimulation of cutaneous nociceptors by heating the skin to 46 degrees C caused respiration to increase in both cerebrate and decerebrate cats. An even larger facilitation of respiration occurred when the skin temperature was elevated to 51 degrees C. However, respiration did not increase in either group of cats when the skin was heated to 41 degrees C to activate cutaneous warm receptors. The phenomenon of sensitization of nociceptors was observed. Spinal transection prevented all the respiratory responses to cutaneous heating. We conclude that noxious, but not nonnoxious, increases in skin temperature cause increases in respiratory output.

2017 ◽  
Vol 12 (5) ◽  
pp. 662-667 ◽  
Author(s):  
Matthijs T.W. Veltmeijer ◽  
Dineke Veeneman ◽  
Coen C.C.W. Bongers ◽  
Mihai G. Netea ◽  
Jos W. van der Meer ◽  
...  

Purpose:Exercise increases core body temperature (TC) due to metabolic heat production. However, the exercise-induced release of inflammatory cytokines including interleukin-6 (IL-6) may also contribute to the rise in TC by increasing the hypothalamic temperature set point. This study investigated whether the exercise-induced increase in TC is partly caused by an altered hypothalamic temperature set point.Methods:Fifteen healthy, active men age 36 ± 14 y were recruited. Subjects performed submaximal treadmill exercise in 3 randomized test conditions: (1) 400 mg ibuprofen and 1000 mg acetaminophen (IBU/APAP), (2) 1000 mg acetaminophen (APAP), and (3) a control condition (CTRL). Acetaminophen and ibuprofen were used to block the effect of IL-6 at a central and peripheral level, respectively. TC, skin temperature, and heart rate were measured continuously during the submaximal exercise tests.Results:Baseline values of TC, skin temperature, and heart rate did not differ across conditions. Serum IL-6 concentrations increased in all 3 conditions. A significantly lower peak TC was observed in IBU/APAP (38.8°C ± 0.4°C) vs CTRL (39.2°C ± 0.5°C, P = .02) but not in APAP (38.9°C ± 0.4°C) vs CTRL. Similarly, a lower ΔTC was observed in IBU/APAP (1.7°C ± 0.3°C) vs CTRL (2.0°C ± 0.5°C, P < .02) but not in APAP (1.7°C ± 0.5°C) vs CTRL. No differences were observed in skin temperature and heart-rate responses across conditions.Conclusions:The combined administration of acetaminophen and ibuprofen resulted in an attenuated increase in TC during exercise compared with a CTRL. This observation suggests that a prostaglandin-E2-induced elevated hypothalamic temperature set point may contribute to the exercise-induced rise in TC.


2005 ◽  
Vol 98 (3) ◽  
pp. 780-786 ◽  
Author(s):  
A. K. Curran ◽  
L. Xia ◽  
J. C. Leiter ◽  
D. Bartlett

Hyperthermia and reflex apnea may both contribute to sudden infant death syndrome (SIDS). Therefore, we investigated the effect of increased body temperature on the inhibition of breathing produced by water injected into the larynx, which elicits the laryngeal chemoreflex (LCR). We studied decerebrated, vagotomized, neonatal piglets aged 3–15 days. Blood pressure, end-tidal CO2, body temperature, and phrenic nerve activity were recorded. To elicit the LCR, we infused 0.1 ml of distilled water through a polyethylene tube passed through the nose and positioned just rostral to the larynx. Three to five LCR trials were performed with the piglet at normal body temperature. The animal's core body temperature was raised by ∼2.5°C, and three to five LCR trials were performed before the animal was cooled, and three to five LCR trials were repeated. The respiratory inhibition associated with the LCR was substantially prolonged when body temperature was elevated. Thus elevated body temperature may contribute to the pathogenesis of SIDS by increasing the inhibitory effects of the LCR.


2021 ◽  
Vol 16 (1) ◽  
pp. 103-109
Author(s):  
Gavin Cowper ◽  
Martin Barwood ◽  
Stuart Goodall

Purpose: Rowers can be in marshaling areas for up to 20 to 25 min before the start of a race, which likely negates any benefits of an active warm-up, especially in cold environments. It is unknown if using a heated jacket following a standardized rowing warm-up can improve 2000-m rowing performance. Methods: On 2 separate occasions, 10 trained male rowers completed a standardized rowing warm-up, followed by 25 min of passive rest before a 2000-m rowing time trial on a rowing ergometer. Throughout the passive rest, the participants wore either a standardized tracksuit top (CON) or an externally heated jacket (HEAT). The trials, presented in a randomized crossover fashion, were performed in a controlled environment (temperature 8°C, humidity 50%). Rowing time-trial performance, core body temperature, and mean skin temperature, along with perceptual variables, were measured. Results: During the 25-min period, core body temperature increased in HEAT and decreased in CON (Δ0.54°C [0.74°C] vs −0.93°C [1.14°C]; P = .02). Additionally, mean skin temperature (30.22°C [1.03°C] vs 28.86°C [1.07°C]) was higher in HEAT versus CON (P < .01). In line with the physiological data, the perceptual data confirmed that participants were more comfortable in HEAT versus CON, and subsequently, rowing performance was improved in HEAT compared with CON (433.1 [12.7] s vs 437.9 [14.4] s, P < .01). Conclusion: The data demonstrate that an upper-body external heating garment worn following a warm-up can improve rowing performance in a cool environment.


1989 ◽  
Vol 69 (3-2) ◽  
pp. 1339-1345
Author(s):  
Alex M. Babcock ◽  
Chris Barton

Bombesin-like peptides are widely distributed in the mammalian central nervous system and appear to participate in the regulation of a variety of autonomic functions. Bombesin has been shown to alter feeding behavior, locomotor activity, and thermoregulation. Microinfusion of bombesin into the preoptic area of the hypothalamus produces a reduction in core body temperature, but only if the rat has been cold-exposed, food-deprived, or pretreated with insulin. The mechanism for bombesin-induced hypothermia under the latter two conditions is unknown. The present study evaluated the possible contribution of peripheral heat loss mechanisms in bombesin-induced hypothermia. Rats were administered insulin (10U/kg, Regular Iletin I i.m.) or saline followed by an intrahypothalamic injection of bombesin (.05 μg/ .25 μl) or peptide vehicle. Rectal and tail-skin temperatures were measured continuously for 120 min. Changes in temperature were evaluated at 30, 60, 90, and 120 min., using analysis of variance. As previously demonstrated, bombesin produced hypothermia in rats pretreated with insulin. This reduction in core temperature was not associated with any significant alteration in tail-skin temperature. Results suggest that bombesin-induced hypothermia in rats pretreated with insulin may not be mediated by an increase in peripheral heat loss.


2021 ◽  
Vol 13 ◽  
Author(s):  
Patrick Eggenberger ◽  
Michael Bürgisser ◽  
René M. Rossi ◽  
Simon Annaheim

Wearable devices for remote and continuous health monitoring in older populations frequently include sensors for body temperature measurements (i.e., skin and core body temperatures). Healthy aging is associated with core body temperatures that are in the lower range of age-related normal values (36.3 ± 0.6°C, oral temperature), while patients with Alzheimer’s disease (AD) exhibit core body temperatures above normal values (up to 0.2°C). However, the relation of body temperature measures with neurocognitive health in older adults remains unknown. This study aimed to explore the association of body temperature with cognitive performance in older adults with and without mild cognitive impairment (MCI). Eighty community-dwelling older adults (≥65 years) participated, of which 54 participants were cognitively healthy and 26 participants met the criteria for MCI. Skin temperatures at the rib cage and the scapula were measured in the laboratory (single-point measurement) and neuropsychological tests were conducted to assess general cognitive performance, episodic memory, verbal fluency, executive function, and processing speed. In a subgroup (n = 15, nine healthy, six MCI), skin and core body temperatures were measured continuously during 12 h of habitual daily activities (long-term measurement). Spearman’s partial correlation analyses, controlled for age, revealed that lower median body temperature and higher peak-to-peak body temperature amplitude was associated with better general cognitive performance and with better performance in specific domains of cognition; [e.g., rib median skin temperature (single-point) vs. processing speed: rs = 0.33, p = 0.002; rib median skin temperature (long-term) vs. executive function: rs = 0.56, p = 0.023; and peak-to-peak core body temperature amplitude (long-term) vs. episodic memory: rs = 0.51, p = 0.032]. Additionally, cognitively healthy older adults showed lower median body temperature and higher peak-to-peak body temperature amplitude compared to older adults with MCI (e.g., rib median skin temperature, single-point: p = 0.035, r = 0.20). We conclude that both skin and core body temperature measures are potential early biomarkers of cognitive decline and preclinical symptoms of MCI/AD. It may therefore be promising to integrate body temperature measures into multi-parameter systems for the remote and continuous monitoring of neurocognitive health in older adults.


2005 ◽  
Vol 288 (6) ◽  
pp. R1589-R1597 ◽  
Author(s):  
Roy J. E. M. Raymann ◽  
Dick F. Swaab ◽  
Eus J. W. Van Someren

Sleep occurs in close relation to changes in body temperature. Both the monophasic sleep period in humans and the polyphasic sleep periods in rodents tend to be initiated when core body temperature is declining. This decline is mainly due to an increase in skin blood flow and consequently skin warming and heat loss. We have proposed that these intrinsically occurring changes in core and skin temperatures could modulate neuronal activity in sleep-regulating brain areas (Van Someren EJW, Chronobiol Int 17: 313–54, 2000). We here provide results compatible with this hypothesis. We obtained 144 sleep-onset latencies while directly manipulating core and skin temperatures within the comfortable range in eight healthy subjects under controlled conditions. The induction of a proximal skin temperature difference of only 0.78 ± 0.03°C (mean ± SE) around a mean of 35.13 ± 0.11°C changed sleep-onset latency by 26%, i.e., by 3.09 minutes [95% confidence interval (CI), 1.91 to 4.28] around a mean of 11.85 min (CI, 9.74 to 14.41), with faster sleep onsets when the proximal skin was warmed. The reduction in sleep-onset latency occurred despite a small but significant decrease in subjective comfort during proximal skin warming. The induction of changes in core temperature (δ = 0.20 ± 0.02°C) and distal skin temperature (δ = 0.74 ± 0.05°C) were ineffective. Previous studies have demonstrated correlations between skin temperature and sleep-onset latency. Also, sleep disruption by ambient temperatures that activate thermoregulatory defense mechanisms has been shown. The present study is the first to experimentally demonstrate a causal contribution to sleep-onset latency of skin temperature manipulations within the normal nocturnal fluctuation range. Circadian and sleep-appetitive behavior-induced variations in skin temperature might act as an input signal to sleep-regulating systems.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Qun Wei ◽  
Hee-Joon Park ◽  
Jyung Hyun Lee

In this paper, a user-friendly and low-cost wireless health monitoring system that measures skin temperature from the back of the body for monitoring the core body temperature is proposed. To measure skin temperature accurately, a semiconductor-based microtemperature sensor with a maximum accuracy of ±0.3°C was chosen and controlled by a high-performance/low-power consumption Acorn-Reduced Instruction Set Computing Machine (ARM) architecture microcontroller to build the temperature measuring device. Relying on a 2.4 GHz multichannel Gaussian frequency shift keying (GFSK) RF communication technology, up to 100 proposed temperature measuring devices can transmit the data to one receiver at the same time. The shell of the proposed wireless temperature-measuring device was manufactured via a 3D printer, and the device was assembled to conduct the performance tests and in vivo experiments. The performance test was conducted with a K-type temperature sensor in a temperature chamber to observe temperature measurement performance. The results showed an error value between two devices was less than 0.1°C from 25 to 40°C. For the in vivo experiments, the device was attached on the back of 10 younger male subjects to measure skin temperature to investigate the relationship with ear temperature. According to the experimental results, an algorithm based on the curve-fitting method was implemented in the proposed device to estimate the core body temperature by the measured skin temperature value. The algorithm was established as a linear model and set as a quadratic formula with an interpolant and with each coefficient for the equation set with 95% confidence bounds. For evaluating the goodness of fit, the sum of squares due to error (SSE), R-square, adjusted R-square, and root mean square error (RMSE) values were 33.0874, 0.0212, 0.0117, and 0.3998, respectively. As the experimental results have shown, the mean value for an error between ear temperature and estimated core body temperature is about ±0.19°C, and the mean bias is 0.05 ± 0.14°C when the subjects are in steady status.


2013 ◽  
Vol 34 (11) ◽  
pp. 1531-1543 ◽  
Author(s):  
V L Richmond ◽  
D M Wilkinson ◽  
S D Blacker ◽  
F E Horner ◽  
J Carter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document