scholarly journals Dose response of biochar and wood vinegar on in vitro batch culture ruminal fermentation using contrasting feed substrates

Author(s):  
G C O’Reilly ◽  
Y Huo ◽  
S J Meale ◽  
A V Chaves

Abstract Within Australia, approximately 6.4% of total greenhouse gas emissions are from animal methane (CH4) derived from enteric fermentation. Mitigation of ruminant CH4 is a key concept in support of sustainable agriculture production; dietary manipulations a viable strategy to lower CH4 release during enteric fermentation. In order to determine the effects of dose response of biochar and wood vinegar supplementation on fermentation parameters and CH4 production, this study utilized in vitro batch culture incubations. It is hypothesized the addition of either biochar or wood vinegar will successfully reduce enteric CH4 emissions without negative modification of other fermentation parameters. Three feed substrates (vegetable mixed ration, maize silage and winter pasture) were separated into treatments containing either biochar at 0%, 0.5%, 1%, 2% and 4% DM replacing substrate (w/w basis), or wood vinegar at 0%, 0.25%, 0.5%, 1% and 2% into incubation media volume (v/v). At 6, 12 and 24 hours after inoculation, total gas volume and methane (CH4 %) were measured. Volatile fatty acids (VFA) concentrations, media pH and in vitro dry matter digestibility were measured at 24h. Biochar at various dosages had no effect (P > 0.05) on fermentation characteristics other than decreased in vitro dry matter digestibility (IVDMD; P = 0.01) at 2 and 4% (DM basis) inclusion. Similar to biochar, dose response of wood vinegar had no effect on in vitro fermentation characteristics. However, feed substrate had major effects on all fermentation parameters (P = 0.01) where winter pasture > vegetable mixed ration > maize silage for all recorded fermentation characteristics. Biochar and wood vinegar supplementation were ineffectual in mitigating CH4 production or modifying fermentation characteristics, thus rejecting the initial hypothesis. These results suggest the use of biochar is not an effective tool for methane mitigation in ruminant livestock and infers that studies previously reporting success must better define the systemic mechanisms responsible for the reduction in CH4.

2014 ◽  
Vol 54 (9) ◽  
pp. 1345 ◽  
Author(s):  
L. G. Reis ◽  
A. V. Chaves ◽  
S. R. O. Williams ◽  
P. J. Moate

This study aimed to evaluate the effect of organic acids on in vitro fermentation characteristics. Four organic acids (tartaric, malic, fumaric and citric) and their enantiomers (L-tartaric, D-tartaric, DL-tartaric, L-malic and DL-malic) were analysed using in vitro batch culture incubations, at four concentrations (0, 5, 10 and 15 mM). Cumulative total gas and methane (CH4) production (mL/g DM) were measured at 6, 12 and 24 h; ammonia, pH, volatile fatty acids (VFA) and in vitro dry matter digestibility (IVDMD) were determined after 24 h of fermentation. Overall, addition of acids at 5 to 15 mM increased (P < 0.0001) cumulative gas and CH4 production. No effect (P > 0.10) of enantiomers, individual acid or interaction acid × concentration was detected at 12 and 24 h for cumulative gas or CH4 production. Addition of DL-malic, L-malic and fumaric acids increased (P < 0.0001) the percentage of propionic acid in the ruminal fluid total VFA compared with all concentrations of the other organic acids or their enantiomers. Ammonia concentration was not affected (P ≥ 0.28) by the addition of organic acids, concentrations or interactions. These findings are evidence that ruminal microorganisms can metabolise both D- and L-enantiomers of organic acids. None of the organic acids and their enantiomers at four different concentrations demonstrated potential as CH4 mitigation agents.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
P.-L. Lopez-Marnet ◽  
S. Guillaume ◽  
M.-P. Jacquemot ◽  
M. Reymond ◽  
V. Méchin

Abstract Background Since the introduction of studies on maize silage digestibility at the end of the nineteenth century, protocols to estimate dry matter digestibility have not stopped evolving. Since the early 1980s, the protocol developed by Aufrère became a benchmark in many laboratories to estimate in vitro dry matter digestibility. In order to increase its throughput, to facilitate its execution and to decipher the impact of the different parameters of the protocol we decided to test the combination of 7 parameters in 21 different protocols. Results We thus tested the impact of (1) the presence or absence of pepsin in HCl solution, (2) the temperature of incubation during enzymatic hydrolysis, (3) the presence or absence of a gelatinization step, (4) washing/rinsing versus neutralization step, (5) the presence or absence of α-amyloglucosidase in enzymatic solution, (6) the duration of cellulase incubation, and (7) the concentration of the cellulase solution. The major result of our work highlighted that it was essential to carry out a gelatinization step to correctly estimate the in vitro dry matter digestibility of maize silage. Conclusions The proposed protocol in this paper is innovative, reliable, highthroughput and easy to implement in many laboratories to accurately quantity in vitro dry matter digestibility.


2015 ◽  
pp. 4726-4738 ◽  
Author(s):  
John Ramírez ◽  
Sandra Posada O ◽  
Ricardo Noguera

ABSTRACT Objective. To evaluate the effect of Kikuyu grass (Pennisetum clandestinum) harvested at two different ages and three forage: concentrate supplement ratios (F/C) on methane (CH4) production, dry matter digestibility (DMD), and fermentation profile using the in vitro gas production technique. Materials and methods. six treatments, resulting from the combination of pasture age (30 or 60 days) and F/C (100/0, 75/25, or 50/50) were evaluated using a 2x3 factorial design. The response variables were measured 6, 12, 24 and 48 hours after incubation. A repeated-measure over time design was used to analyze the data, and differences between means were determined with the LSMEANS procedure of SAS. Results. the youngest grass (30 days) was more digestible, produced less CH4 per gram of digestible dry matter (dDM) and more total volatile fatty acids (VFA) compared to the oldest grass (60 days; p <0.05). Reductions of the F/C ratio increased DMD and CH4 production per gram of dDM (p<0.05) but had no significant effect on VFA concentration (p>0.05). Conclusions. under in vitro conditions and pH close to neutrality, the older grass reduces DMD and increases CH4 production per gram of dDM, while a F/C reduction increases DMD and CH4 production per gram of dDM, which differs with reports conducted in vivo.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 468-468
Author(s):  
Sandra Suescun-Ospina ◽  
Nelson Vera ◽  
Rita Astudillo ◽  
Jorge Avila-Stagno

Abstract Grape marc (GM) is a viticulture by-product used as cattle supplement in periods of shortage of conventional feed sources. It contains fats, high concentrations of polyphenols and has been reported to reduce enteric methane (CH4) emissions. In-vitro batch culture was used to study the effects of substitution of mixed hay (MH) for a traditional Chilean variety (Vitis vinifera “País”) of GM on in vitro dry matter disappearance (IVDMD), rumen fermentation parameters (short chain fatty acids, pH, partitioning factor), gas and CH4 production in a 60% forage diet (dry matter, DM). The study was a randomized complete design with 3 treatments and 3 replicates, incubated for 24 h at 39º C. Treatments were: T1 (Control): 20% MH, 40% corn silage, 40% concentrate; T2 = 10% MH, 10% GM, 40% corn silage, 40% concentrate; T3 = 20% GM, 40% corn silage, 40% concentrate. Means were compared with the Tukey test (P &lt; 0.05), and polynomial contrasts. Substitution of MH with GM significantly reduced ammonia nitrogen (NH3-N) by 50% (P &lt; 0.05), although it did not affect IVDMD, gas production or other rumen fermentation parameters (P &gt; 0.05). Total CH4 (mg) linearly decreased (P = 0.013) as concentrations of GM increased. Methane production (mg/g DM incubated) and yield (mg/g DM digested) decreased linearly (P = 0.002 and P = 0.003, respectively) as inclusion of GM increased. Inclusion of GM at 20% reduced CH4 production by 19% and CH4 yield by 16.4%. These results indicate that partial substitution of dietary fiber sources with traditional Chilean País GM in high fiber diets is a viable feeding alternative, and can decrease environmental impact (lower CH4 and ammonia emissions) of ruminant livestock, without negatively affecting rumen fermentation parameters.


Author(s):  
Janet H. Woodward ◽  
D. E. Akin

Silicon (Si) is distributed throughout plant tissues, but its role in forages has not been clarified. Although Si has been suggested as an antiquality factor which limits the digestibility of structural carbohydrates, other research indicates that its presence in plants does not affect digestibility. We employed x-ray microanalysis to evaluate Si as an antiquality factor at specific sites of two cultivars of bermuda grass (Cynodon dactvlon (L.) Pers.). “Coastal” and “Tifton-78” were chosen for this study because previous work in our lab has shown that, although these two grasses are similar ultrastructurally, they differ in in vitro dry matter digestibility and in percent composition of Si.Two millimeter leaf sections of Tifton-7 8 (Tift-7 8) and Coastal (CBG) were incubated for 72 hr in 2.5% (w/v) cellulase in 0.05 M sodium acetate buffer, pH 5.0. For controls, sections were incubated in the sodium acetate buffer or were not treated.


Crop Science ◽  
1986 ◽  
Vol 26 (6) ◽  
pp. 1123-1126 ◽  
Author(s):  
N. J. Ehlke ◽  
M. D. Casler ◽  
P. N. Drolsom ◽  
J. S. Shenk

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 879
Author(s):  
Seong-Shin Lee ◽  
Jeong-Seok Choi ◽  
Dimas Hand Vidya Paradhipta ◽  
Young-Ho Joo ◽  
Hyuk-Jun Lee ◽  
...  

This research was conducted to determine the effects of selected inoculant on the silage with different wilting times. The ryes were unwilted or wilted for 12 h. Each rye forage was ensiled for 100 d in quadruplicate with commercial inoculant (Lactobacillus plantarum sp.; LPT) or selected inoculant (Lactobacillus brevis 100D8 and Leuconostoc holzapfelii 5H4 at 1:1 ratio; MIX). In vitro dry matter digestibility and in vitro neutral detergent fiber digestibility were highest in the unwilted MIX silages (p < 0.05), and the concentration of ruminal acetate was increased in MIX silages (p < 0.001; 61.4% vs. 60.3%) by the increase of neutral detergent fiber digestibility. The concentration of ruminal ammonia-N was increased in wilted silages (p < 0.001; 34.8% vs. 21.1%). The yeast count was lower in the MIX silages than in the LPT silages (p < 0.05) due to a higher concentration of acetate in MIX silages (p < 0.05). Aerobic stability was highest in the wilted MIX silages (p < 0.05). In conclusion, the MIX inoculation increased aerobic stability and improved fiber digestibility. As a result of the wilting process, ammonia-N in silage decreased but ruminal ammonia-N increased. Notably, the wilted silage with applied mixed inoculant had the highest aerobic stability.


1988 ◽  
Vol 68 (3) ◽  
pp. 787-799 ◽  
Author(s):  
V. GIRARD ◽  
G. DUPUIS

In view of the large variation found in plant cell wall digestibilities with ruminants, an attempt was made to group 124 feeds into different lignification classes (clusters) on the basis of chemical characteristics. Each feed cluster was described using a structural coefficient [Formula: see text] that related the potentially digestible fiber (PDF, %) to the ratio between lignin and cell wall volume. The optimum number of clusters was determined iteratively by performing a regression of the apparent digestibility of dry matter at maintenance level (DDM1, %) against the PDF and cell soluble (SOL, %) contents of feeds. The [Formula: see text] coefficients varied from 0.05 (grains, N = 13) to 1.85 (corn silage, N = 3) and increased with the maturity of the grasses from 0.88 (legumes, vegetative cool season grasses, N = 26) to 1.33 (mature, cool season grasses, N = 19). Predicted PDF were closely correlated (r > 0.9, P < 0.01) to in vitro cell wall disappearances (IVCWD). Apparently digestible cell wall in four grasses and four legumes increased linearly with 96-h IVCWD and standard error (SE) was similar to the SE of predicted apparent digestible SOL from SOL concentrations. Assuming that similarity between SE could be also observed in larger samples, PDF and SOL were used in summative equations to predict apparent dry matter digestibility. DDM1 discounted for intake (DDM1 – 4, %) was regressed against SOL and PDF concentrations of 87 feeds:[Formula: see text]with ds and df, the true digestibilities of SOL and PDF. Estimates of ds and df were 0.98 and 0.95 for a zero-production (maintenance) level of intake, and 0.91 and 0.79 for an intake level four times maintenance. Since the true digestibility of the PDF component was only 4% – 13% lower than that of the cell soluble component, the concentration of PDF in cell wall was the major determinant in the variation in apparent digestibility of forages. Key words: lignin, neutral detergent fiber, true digestibility, cluster analysis, feeds


Sign in / Sign up

Export Citation Format

Share Document