scholarly journals Large postural sways prevent foot tactile information from fading: neurophysiological evidence

Author(s):  
Marie Fabre ◽  
Marine Antoine ◽  
Mathieu Germain Robitaille ◽  
Edith Ribot-Ciscar ◽  
Rochelle Ackerley ◽  
...  

Abstract Cutaneous foot receptors are important for balance control and their activation during quiet standing depends on the speed and the amplitude of postural oscillations. We hypothesized that the transmission of cutaneous input to the cortex is reduced during prolonged small postural sways, due to receptor adaptation during continued skin compression. Central mechanisms would trigger large sways to reactivate the receptors. We compared the amplitude of P50N90 somatosensory cortical potentials evoked by electrical stimulation of the foot sole during small and large sways in 16 young adults standing still with their eyes closed. We observed greater P50N90 amplitudes during large sways compared to small sways consistent with increased cutaneous transmission during large sways. Postural oscillations computed 200 ms before large sways had smaller amplitudes than those before small sways, providing sustained compression within a small foot sole area. Cortical source analyses revealed that during this interval the activity of the somatosensory areas decreased, whereas the activity of cortical areas engaged in motor planning (supplementary motor area, dorsolateral prefrontal cortex) increased. We concluded that large sways during quiet standing represent self-generated functional behavior aiming at releasing skin compression to reactivate mechanoreceptors. Such balance motor commands create sensory reafference that help control postural sway.

2014 ◽  
Vol 27 (3) ◽  
pp. 399-406 ◽  
Author(s):  
Sarina Francescato Torres ◽  
Júlia Guimarães Reis ◽  
Daniela Cristina Carvalho de Abreu

Objective To verify the effects of gender and physical activity on postural sway. Method A cross-sectional study was conducted to analyze upright balance of young men and women between the ages of 20-30, both active and sedentary. Study participants were 60 individuals, who were divided into: active women (n = 15), sedentary women (n = 15), active men (n = 15) and sedentary men (n = 15). The International Physical Activity Questionnaire (IPAQ) short form, was used to evaluate each participant’s level of physical activity. According to the questionnaire, active individuals are those who carry out moderate activity, with an energy expenditure between 3.5 and 6 METs (1 MET: 3.5 ml/kg/min), or vigorous activity, with an energy expenditure above 6 METs, at least three days a week for 20 minutes. To assess control of postural sway, we measured the amplitude and velocity of anteroposterior (AP) and mediolateral (ML) sway in standing position, with their eyes open and closed, with and without foam, on a force platform. Results Comparison between genders revealed that, when compared to sedentary women, sedentary men displayed poorer performance in velocity and amplitude of AP postural control sway with their eyes closed, with and without foam. There were no differences in the amplitude and velocity of ML sway, both with open and closed eyes among groups (p < 0.05). There were no differences when comparing physically active men and women either. Conclusion Sedentary men seem to rely more on vision for maintaining postural control in quiet standing situations with respect to women.


2011 ◽  
Vol 20 (4) ◽  
pp. 442-456 ◽  
Author(s):  
Zohreh Meshkati ◽  
Mehdi Namazizadeh ◽  
Mahyar Salavati ◽  
Masood Mazaheri

Context:Although reliability is a population-specific property, few studies have investigated the measurement error associated with force-platform parameters in athletic populations.Objective:To investigate the skill-related differences between athletes and nonathletes in reliability of center-of-pressure (COP) summary measures under eyes-open (EO) and eyes-closed (EC) conditions.Design:Test–retest reliability study.Setting:COP was recorded during double-leg quiet standing on a Kistler force platform before and after a fatiguing treadmill exercise, with EO and EC.Participants:31 male participants including 15 athletes practiced in karate and 16 nonathletes.Main Outcome Measures:Standard deviation (SD) of amplitude, phase-plane portrait, SD of velocity, mean total velocity, and area were calculated from 30-s COP data. Intraclass correlation coefficient (ICC), standard error of measurement, and coefficient of variation (CV) were used as estimates of reliability and precision.Results:Higher ICCs were found for COP measures in the athlete (compared with the nonathlete) group, postfatigued (compared with prefatigued) condition, and EC (compared with EO) tests. CVs smaller than 15% were obtained for most of the COP measures. SD of velocity in the anteroposterior direction showed the highest reliability in most conditions.Conclusions:Tests with EC and to a lesser extent tests performed in the athlete group and in the postfatigued condition showed better reliability.


2004 ◽  
Vol 21 (1) ◽  
pp. 19-33 ◽  
Author(s):  
Eryk P. Przysucha ◽  
M. Jane Taylor

The purpose of this study was to compare the postural sway profiles of 20 boys with and without Developmental Coordination Disorder (DCD) on two conditions of a quiet standing task: eyes open and eyes closed. Anterior-posterior (AP) sway, medio-lateral sway (LAT), area of sway, total path length, and Romberg’s quotient were analyzed. When visual information was available, there was no difference between groups in LAT sway or path length. However, boys with DCD demonstrated more AP sway (p < .01) and greater area of sway (p < .03), which resulted in pronounced excursions closer to their stability limits. Analysis of Romberg’s quotient indicated that boys with DCD did not over-rely on visual information.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Reza Rahimzadeh Khiabani ◽  
George Mochizuki ◽  
Farooq Ismail ◽  
Chris Boulias ◽  
Chetan P. Phadke ◽  
...  

Background. Balance impairments, falls, and spasticity are common after stroke, but the effect of spasticity on balance control after stroke is not well understood.Methods. In this cross-sectional study, twenty-seven participants with stroke were divided into two groups, based on ankle plantar flexor spasticity level. Fifteen individuals with high spasticity (Modified Ashworth Scale (MAS) score of ≥2) and 12 individuals with low spasticity (MAS score <2) completed quiet standing trials with eyes open and closed conditions. Balance control measures included centre of pressure (COP) root mean square (RMS), COP velocity, and COP mean power frequency (MPF) in anterior-posterior and mediolateral (ML) directions. Trunk sway was estimated using a wearable inertial measurement unit to measure trunk angle, trunk velocity, and trunk velocity frequency amplitude in pitch and roll directions.Results. The high spasticity group demonstrated greater ML COP velocity, trunk roll velocity, trunk roll velocity frequency amplitude at 3.7 Hz, and trunk roll velocity frequency amplitude at 4.9 Hz, particularly in the eyes closed condition (spasticitybyvisioninteraction). ML COP MPF was greater in the high spasticity group.Conclusion. Individuals with high spasticity after stroke demonstrated greater impairment of balance control in the frontal plane, which was exacerbated when vision was removed.


2017 ◽  
Vol 118 (4) ◽  
pp. 1943-1951 ◽  
Author(s):  
Anderson S. Oliveira ◽  
Bryan R. Schlink ◽  
W. David Hairston ◽  
Peter König ◽  
Daniel P. Ferris

This study aimed to determine whether there is electrocortical evidence of augmented participation of sensory brain areas in walking modulation during walking with eyes closed. Healthy subjects ( n = 10) walked on a treadmill at 1 m/s while alternating 5 min of walking with the eyes open or closed while we recorded ground reaction forces (GRFs) and high-density scalp electroencephalography (EEG). We applied independent component analysis to parse EEG signals into maximally independent component (IC) processes and then computed equivalent current dipoles for each IC. We clustered cortical source ICs and analyzed event-related spectral perturbations synchronized to gait events. Our results indicated that walking with eyes closed reduced the first peak of the vertical GRFs and induced shorter stride duration. Regarding the EEG, we found that walking with eyes closed induced significantly increased relative theta desynchronization in the frontal and premotor cortex during stance, as well as greater desynchronization from theta to beta bands during transition to single support for both left and right somatosensory cortex. These results suggest a phase-specific increased participation of brain areas dedicated to sensory processing and integration when vision is not available for locomotor guidance. Furthermore, the lack of vision demands higher neural processing related to motor planning and execution. Our findings provide evidence supporting the use of eyes-closed tasks in clinical practice, such as gait rehabilitation and improvements in balance control, as there is higher demand for additional sensory integration for achieving postural control. NEW & NOTEWORTHY We measured electrocortical dynamics in sighted individuals while walking with eyes open and eyes closed to induce the participation of other sensory systems in postural control. Our findings show that walking with visual restriction increases the participation of brain areas dedicated to sensory processing, motor planning, and execution. These results confirm the essential participation of supraspinal inputs to postural control in human locomotion, supporting the use of eyes-closed tasks in clinical practice.


2015 ◽  
Vol 4 ◽  
pp. RPO.S20363 ◽  
Author(s):  
Avril Mansfield ◽  
Elizabeth L. Inness

Assessment of balance control is essential to guide physical rehabilitation poststroke. However, current observational assessment tools available to physiotherapists provide limited information about underlying dyscontrol. This paper describes a force plate-based assessment of quiet standing balance control that we have implemented for individuals attending inpatient stroke rehabilitation. The assessment uses two force plates to measure location of ground reaction forces to maintain stability in quiet standing in five conditions (eyes open, eyes closed, standing symmetrically, and maximal loading on the less-affected and more-affected limbs). Measures of interest are variability of the centers of pressure under each foot and both feet combined, weight-bearing asymmetry, and correlation of center of pressure fluctuations between limbs. We present representative values for the above-mentioned measures and case examples to illustrate how the assessment can reveal patient-specific balance control problems and direct treatment. We identify limitations to our current assessment and recommendations for future research.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Angélica C. Alonso ◽  
Luis Mochizuki ◽  
Natália Mariana Silva Luna ◽  
Sérgio Ayama ◽  
Alexandra Carolina Canonica ◽  
...  

The aim of this study was to evaluate the relation between the sensory and anthropometric variables in the quiet standing.Methods. One hundred individuals (50 men, 50 women; 20–40 years old) participated in this study. For all participants, the body composition (fat tissue, lean mass, bone mineral content, and bone mineral density) and body mass, height, trunk-head length, lower limb length, and upper limb length were measured. The center of pressure was measured during the quiet standing posture, the eyes opened and closed with a force platform. Correlation and regression analysis were run to analyze the relation among body composition, anthropometric data, and postural sway.Results. The correlation analysis showed low relation between postural sway and anthropometric variables. The multiple linear regression analyses showed that the height explained 12% of the mediolateral displacement and 11% of the center of pressure area. The length of the trunk head explained 6% of displacement in the anteroposterior postural sway. During eyes closed condition, the support basis and height explained 18% of mediolateral postural sway.Conclusion. The postural control depends on body composition and dimension. This relation is mediated by the sensory information. The height was the anthropometric variable that most influenced the postural sway.


2020 ◽  
Vol 127 (4) ◽  
pp. 639-650
Author(s):  
Kohtaroh Hagio ◽  
Hiroki Obata ◽  
Kimitaka Nakazawa

The execution of cognitive tasks is known to alter postural sway during standing, but the underlying mechanisms are still debated. This study investigated how performing a mental task modified balance control during standing. We required 15 healthy adult males to maintain an upright stance under conditions of simply relaxing and maintaining normal quiet standing (control condition) or while performing a secondary cognitive task (mental arithmetic). Under each condition, we measured the participants’ center of pressure and used kinematic measurements for a quantitative evaluation of postural control modulation. We calculated the standard deviation of the joint angles (ankle, knee, and hip) and the estimated joint stiffness to measure joint mobility changes in postural control. To estimate the kinematic pattern of covariation among these joints, we used uncontrolled manifold analysis, an assessment of the strength of multijoint coordination. Compared to normal standing, executing the cognitive task while standing led to reduced movements of the ankle and hip joints. There were no significant differences in ankle stiffness or uncontrolled manifold ratios between the conditions. Our results suggest that when performing a secondary cognitive task during standing, neither changes in the modification of stiffness nor the strength of multijoint coordination (both of which preserve the center of mass position) explains changes in postural sway.


2016 ◽  
Vol 26 (6) ◽  
pp. 567-572 ◽  
Author(s):  
Aleksandra Truszczyńska ◽  
Zbigniew Trzaskoma ◽  
Jerzy Białecki ◽  
Justyna Drzał-Grabiec ◽  
Emilia Dadura ◽  
...  

Background Postural stability is of great importance because imbalances and muscle weakness are significant risk factors for falls experienced by the elderly. Hip arthrosis, which causes pain and gait disorders that affect balance control, is common in the ageing population. Aim The aim of this study was to assess postural stability in patients with unilateral hip arthrosis before total hip arthroplasty. Methods The study population consisted of 52 patients with hip arthrosis (study group) and 47 subjects with no history of clinical symptoms of hip pain. The groups did not differ statistically in terms of age and BMI. Static balance was assessed by conducting a quantitative analysis of balance reaction parameters in a quiet standing position with the eyes open and closed. Results Analysis of the collected data revealed numerous statistically significant differences between patients with unilateral hip arthrosis before total hip arthoplasty and the asymptomatic group for parameters tested with eyes closed (p<0.05). We observed higher values of total length of centre of pressure (COP), sway path (SP), length of COP path in the medial-lateral plane (SPML), maximal amplitude between the 2 most distant points in the medial-lateral plane (MaxML), mean COP velocity (MV), and mean COP velocity in medial-lateral (MVML) in the study group.


Fractals ◽  
2002 ◽  
Vol 10 (01) ◽  
pp. 103-116 ◽  
Author(s):  
YU SHIMIZU ◽  
STEFAN THURNER ◽  
KLAUS EHRENBERGER

Human posture is the result of a complex control system. The joint output of several physiological — most likely nonlinearly interacting — processes leads to constant correctional movements which enable humans to stand upright. These correctional body movements reflect features of the underlying control mechanisms and have recently been shown to be multifractal processes. We analyze the movements of healthy quiet standing persons by means of wavelet-based multifractal spectra. We show that the functional form of these spectra depends on the mode of balance control. We compare the findings from a group of healthy persons to a group of patients suffering from balance disorders. As the main result we find that if balance control inputs, such as visual cues or tactile information are reduced, the dominant fractal exponent becomes smaller and the range of fractal exponents strongly narrows. We suggest to use a set of multifractal spectrum parameters as a "measure of complexity."


Sign in / Sign up

Export Citation Format

Share Document