scholarly journals Shoot water relations of mature black spruce families displaying a genotype x environment interaction in growth rate. II. Temporal trends and response to varying soil water conditions

1999 ◽  
Vol 19 (6) ◽  
pp. 375-382 ◽  
Author(s):  
J. E. Major ◽  
K. H. Johnsen
1997 ◽  
Vol 75 (10) ◽  
pp. 1700-1706 ◽  
Author(s):  
Weixing Tan ◽  
Terence J. Blake

To determine how different mechanisms of drought tolerance contribute to growth rate under drought, this study compared four full-sib black spruce (Picea mariana (Mill.) B.S.P.) families which differed in growth rate when soil water became limiting, stomatal conductance, photosynthesis, and water relations responses to drought. Repeated drought cycles were imposed by withholding soil water in a nursery and physiological responses were measured near the end of the first and third cycle. The most vigorous family under drought had greater osmotic adjustment and maintained higher rates of net photosynthesis during the first cycle of drought and resumed higher rates of photosynthesis sooner upon stress relief, compared with two slow-growing families. Pressure–volume analysis of drought-stressed shoot tissues indicated that the fast-growing family exhibited a larger degree of elastic enhancement (i.e., decrease in bulk modulus of elasticity), which would explain its higher turgor pressure, compared with the two less vigorous families. However, family differences in gas exchange and water relations largely diminished when seedlings were exposed to repeated cycles of drought. Therefore, fast-growing black spruce families under drought may gain selective growth advantage by a better ability to tolerate, rather than postpone, momentary dehydration. Short-term screening trials could be used to detect drought tolerant genotypes in black spruce. Key words: drought, family variation, photosynthesis, Picea mariana, stomatal conductance, water relations.


2015 ◽  
Vol 21 ◽  
pp. 41-48
Author(s):  
Gebremedhin Welu

The objective of this experiment was to estimate the magnitude of genotype X environment interaction on grain yield and yield related traits. Twelve varieties of food barley were included in the study planted in randomized complete block design with three replications. The ANOVA of combined and individual location revealed significant differences among the food barley genotypes for grain yield and other traits. The results of ANOVA for grain yield showed highly significant (p≤0.01) differences among genotypes evaluated for grain yield at Maychew and significant (p≤0.05) differences in Korem, Alage and Mugulat. The ANOVA over locations showed a highly significant (p≤0.01) variation for the genotype effect, environment effects, genotype X environment interaction (GEI) effect and significant (p≤0.05) variation for GEI effect of yield and for most of the yield related traits of food barley genotypes. Haftysene, Yidogit, Estayish and Basso were the genotypes with relatively high mean grain yield across all locations and they are highly performing genotypes to the area. Among locations, the highest mean grain yield was recorded at Korem and it was a suited environment to all the genotypes whereas Mugulat is unfavoured one. ECOPRINT 21: 41-48, 2014DOI: http://dx.doi.org/10.3126/eco.v21i0.11903


1968 ◽  
Vol 48 (2) ◽  
pp. 129-137 ◽  
Author(s):  
A. R. Maurer ◽  
H. F. Fletcher ◽  
D. P. Ormrod

Pea plants growing in "weighing lysimeters" were subjected to five soil-water regimes to determine their response to varying conditions of soil water imposed at different stages of development. Plants subjected to a minimal water stress developed luxuriantly and continued to grow up to the harvest period. Pea yield and plant height were not reduced, but fresh weight and dry matter were less if irrigation was applied when soil water fell to 60% rather than 88% of that available. A severe water stress after blossom reduced pea yield, irrespective of soil-water conditions prior to blossom. Plants which had been given ample soil water before blossom wilted visibly when a severe stress was imposed in the post-blossom period, yet wilting did not occur in plants subjected to severe water stress both before and after blossom. Severe water stress prior to blossom did not cause a decrease in pea yield if ample soil moisture was made available after blossom.


Sign in / Sign up

Export Citation Format

Share Document