scholarly journals Rate of stomatal opening, shoot hydraulic conductance and photosynthetic characteristics in relation to leaf abscisic acid concentration in six temperate deciduous trees

2002 ◽  
Vol 22 (4) ◽  
pp. 267-276 ◽  
Author(s):  
K. Aasamaa ◽  
A. Sober ◽  
W. Hartung ◽  
U. Niinemets
2001 ◽  
Vol 28 (8) ◽  
pp. 765 ◽  
Author(s):  
Krõõt Aasamaa ◽  
Anu Sõber ◽  
Märt Rahi

Some anatomical characteristics in leaves relating to hydraulic conductance and stomatal conductance were examined in six temperate deciduous tree species. The fourth power of the radius of the conducting elements in xylem (r4) and the area of mesophyll and epidermal cells per unit length of leaf cross-section (u) were high in leaves with high hydraulic conductance (L). Stomatal conductance (gs) and stomatal sensitivity to an increase in leaf water potential (si) correlated positively with the length of stomatal pore (l), but negatively with the guard cell width (z) and the length of the dorsal side of the guard cells (ld). Stomatal sensitivity to a decrease in leaf water potential (sd) correlated negatively with l and positively with z and ld. The anatomical characteristics associated with hydraulic conductance (r4 and u) and those associated with stomatal conductance and sensitivity to changes of leaf water potential (l, z and ld) were correlated. We conclude that hydraulic conductance may depend on anatomical characteristics of xylem, mesophyll and epidermis, and stomatal conductance and its sensitivity to changing water potential may depend on anatomical characteristics of stomata. The correlation of shoot hydraulic conductance with stomatal conductance and its sensitivity may be based largely on the correlation between the anatomical characteristics of the water conducting system and stomata in these trees.


2012 ◽  
Vol 39 (8) ◽  
pp. 661 ◽  
Author(s):  
Krõõt Aasamaa ◽  
Anu Sõber

The light sensitivity of the shoot hydraulic conductance in five temperate deciduous tree species was measured using two methods to clarify the role of light sensitivity and the suitability of the methods used to study it. The light sensitivity measured using a method that included an interruption of ≤10 min in shoot light acclimation did not differ from that measured using a method with continuous illumination. The ‘noncontinuous light’ methods are suitable for measuring hydraulic conductance and its light response. Light sensitivity correlated with other leaf water traits as follows: positively with the ion-mediated increase in xylem hydraulic conductance; a relative decrease in the hydraulic conductance of the laminae in response to HgCl2; a relative change in stomatal conductance in response to changes in PAR intensity or atmospheric CO2 concentration, or to a decrease in air humidity or leaf water potential; and with instantaneous water use efficiency. The traits correlated negatively with shoot hydraulic conductance, stomatal conductance and relative increases in stomatal conductance in response to increases in leaf water potential. We suggest that high light sensitivity should be considered as one of the characteristics of conservative water use in trees. Low blue light increased shoot hydraulic conductance to a similar extent to moderate white light and twice as much as moderate red light. Blue light perception is important in the light sensitivity mechanism.


2013 ◽  
Vol 48 (9) ◽  
pp. 1210-1219 ◽  
Author(s):  
Muhammad Iqbal ◽  
Muhammad Ashraf

The objective of this work was to assess the regulatory effects of auxin-priming on gas exchange and hormonal homeostasis in spring wheat subjected to saline conditions. Seeds of MH-97 (salt-intolerant) and Inqlab-91 (salt-tolerant) cultivars were subjected to 11 priming treatments (three hormones x three concentrations + two controls) and evaluated under saline (15 dS m-1) and nonsaline (2.84 dS m-1) conditions. The priming treatments consisted of: 5.71, 8.56, and 11.42 × 10-4 mol L-1 indoleacetic acid; 4.92, 7.38, and 9.84 × 10-4 mol L-1 indolebutyric acid; 4.89, 7.34, and 9.79 × 10-4 mol L-1 tryptophan; and a control with hydroprimed seeds. A negative control with nonprimed seeds was also evaluated. All priming agents diminished the effects of salinity on endogenous abscisic acid concentration in the salt-intolerant cultivar. Grain yield was positively correlated with net CO2 assimilation rate and endogenous indoleacetic acid concentration, and it was negatively correlated with abscisic acid and free polyamine concentrations. In general, the priming treatment with tryptophan at 4.89 × 10-4 mol L-1 was the most effective in minimizing yield losses and reductions in net CO2 assimilation rate, under salt stress conditions. Hormonal homeostasis increases net CO2 assimilation rate and confers tolerance to salinity on spring wheat.


1981 ◽  
Vol 8 (5) ◽  
pp. 443 ◽  
Author(s):  
WJS Downton ◽  
BR Loveys

Changes in abscisic acid, phaseic acid, stomatal resistance, water potential, osmotic potential, turgor potential, proline, reducing sugars and ion content (Na+, K+, Cl-) in leaves from grapevines (Vitis vinifera L.) subjected to 0, 25, 50 or 100 mM NaCl (osmotic potentials of 0, - 0.1, - 0.2 and - 0.4 MPa, respectively) were monitored over a 3-week period. Abscisic acid concentration increased within 6 h for the 50 and 100 mM NaCl-treated vines. Proline did not accumulate until the next day for the 100 mM NaCl-treated plants and continued to accumulate for the duration of the experiment. Phaseic acid showed kinetics consistent with its being derived from abscisic acid. Stomatal resistance to water vapour exchange increased in the salt-treated plants over the course of the experiment despite a decline in abscisic acid concentration after the initial upsurge. Reducing sugar concentration showed an early upsurge, its contribution to osmotic readjustment being at least equal to that of accumulated Na+, K+ and Cl- the day after stress began. Potassium was preferentially accumulated over sodium into leaves during the first 8 days of the experiment and the sum of these two cations generally balanced accumulating chloride. Except for an initial loss of turgor in vines given 100 mM NaCl, turgor potential was maintained within 0.1 MPa of control plants for all of the treatments throughout the experiment.


2014 ◽  
Author(s):  
Rainer Waadt ◽  
Kenichi Hitomi ◽  
Noriyuki Nishimura ◽  
Chiharu Hitomi ◽  
Stephen R Adams ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document