Genome-wide investigation of DNA methylation dynamics reveals a critical role of DNA demethylation during the early somatic embryogenesis of Dimocarpus longan Lour

2020 ◽  
Vol 40 (12) ◽  
pp. 1807-1826
Author(s):  
Xiaohui Chen ◽  
Xiaoping Xu ◽  
Xu Shen ◽  
Hansheng Li ◽  
Chen Zhu ◽  
...  

Abstract DNA methylation plays essential roles in gene regulation, chromatin structure stability, gene imprinting, X chromosome inactivation and embryonic development. However, the dynamics and functions of DNA methylation during the early stage of longan (Dimocarpus longan) somatic embryogenesis (SE) are still unclear. In this study, we carried out whole genome bisulphite sequencing and transcriptome sequencing analyses for embryogenic callus (EC), incomplete compact pro-embryogenic cultures (ICpEC) and globular embryos (GE) in an early SE system. At a global level, the DNA 5-methylcytosine content in EC, ICpEC and GE was 24.59, 19.65 and 19.74%, respectively, suggesting a global decrease in DNA methylation from EC to ICpEC and then a slight increase from ICpEC to GE. Differentially methylated region (DMR) analysis showed that hypomethylation mainly occurred in CHH contexts. Gene ontology and Kyoto encyclopedia of genes and genomes analysis of hypomethylated-CHH-DMR-associated genes revealed that zein biosynthesis, fatty acid biosynthesis, circadian rhythm and mitophagy pathways were involved in longan early SE. Expression patterns of DNA methyltransferase and demethylase genes during longan early SE suggested that the decrease in DNA methylation was probably regulated by DNA methyltransferase genes and the DNA demethylase gene REPRESSOR OF SILENCING 1 (ROS1). The correlation between DNA hypomethylation and gene expression revealed that decreased DNA methylation did not cause extensive changes in gene expression during early longan SE and that gene expression may be affected by methylation changes in gene and downstream regions. Inhibiting DNA methylation with 5-azacytidine treatment in EC promoted the formation of GE and enhanced the capability of longan SE. Our results suggest that DNA demethylation has important roles in longan SE development.

Author(s):  
Daniel M. Sapozhnikov ◽  
Moshe Szyf

AbstractAlthough associations between DNA methylation and gene expression were established four decades ago, the causal role of DNA methylation in gene expression remains unresolved. Different strategies to address this question were developed; however, all are confounded and fail to disentangle cause and effect. We developed here a highly effective new method using only deltaCas9(dCas9):gRNA site-specific targeting to physically block DNA methylation at specific targets in the absence of a confounding flexibly-tethered enzymatic activity, enabling examination of the role of DNA methylation per se in living cells. We show that the extensive induction of gene expression achieved by TET/dCas9-based targeting vectors is confounded by DNA methylation-independent activities, inflating the role of DNA methylation in the promoter region. Using our new method, we show that in several inducible promoters, the main effect of DNA methylation is silencing basal promoter activity. Thus, the effect of demethylation of the promoter region in these genes is small, while induction of gene expression by different inducers is large and DNA methylation independent. In contrast, targeting demethylation to the pathologically silenced FMR1 gene targets robust induction of gene expression. We also found that standard CRISPR/Cas9 knockout generates a broad unmethylated region around the deletion, which might confound interpretation of CRISPR/Cas9 gene depletion studies. In summary, this new method could be used to reveal the true extent, nature, and diverse contribution to gene regulation of DNA methylation at different regions.


2019 ◽  
Vol 31 (3) ◽  
pp. 509 ◽  
Author(s):  
Minli Yu ◽  
Dongfeng Li ◽  
Wanyan Cao ◽  
Xiaolu Chen ◽  
Wenxing Du

Ten–eleven translocation 1 (Tet1) is involved in DNA demethylation in primordial germ cells (PGCs); however, the precise regulatory mechanism remains unclear. In the present study the dynamics of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in developing PGCs and the role of Tet1 in PGC demethylation were analysed. Results show that 5mC levels dropped significantly after embryonic Day 4 (E4) and 5hmC levels increased reaching a peak at E5–E5.5. Interestingly, TET1 protein was highly expressed during E5 to E5.5, which showed a consistent trend with 5hmC. The expression of pluripotency-associated genes (Nanog, PouV and SRY-box 2 (Sox2)) and germ cell-specific genes (caveolin 1 (Cav1), piwi-like RNA-mediated gene silencing 1 (Piwi1) and deleted in azoospermia-like (Dazl)) was upregulated after E5, whereas the expression of genes from the DNA methyltransferase family was decreased. Moreover, the Dazl gene was highly methylated in early PGCs and then gradually hypomethylated. Knockdown of Tet1 showed impaired survival and proliferation of PGCs, as well as increased 5mC levels and reduced 5hmC levels. Further analysis showed that knockdown of Tet1 led to elevated DNA methylation levels of Dazl and downregulated gene expression including Dazl. Thus, this study reveals the dynamic epigenetic reprogramming of chicken PGCs invivo and the molecular mechanism of Tet1 in regulating genomic DNA demethylation and hypomethylation of Dazl during PGC development.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 685-685 ◽  
Author(s):  
Rita Shaknovich ◽  
Leandro Cerchietti ◽  
Maria E. Figueroa ◽  
Ari Melnick

Abstract Normal hematopoiesis requires incremental changes in gene expression in order to establish cellular phenotypes with specialized functions. We are particularly interested in the transcriptional and epigenetic programming of germinal center (GC) B-cells, which acquire unusual biological features normally associated with cancer. Specifically, GC B-cells (i.e. centroblasts - CB) undergo rapid DNA replication while at the same time undergoing genetic recombination, and give rise to a majority of B-cell lymphomas. We hypothesized that epigenetic programming would play a critical role in the CB stage of development, and that gene-specific and genome-wide DNA methyltransferase activity is critical for these cells. We first examined the CpG methylation levels of 24,000 gene promoters in five sets of primary human B-cells just prior to (i.e. naïve B-cells - NBC) and upon entering the GC reaction (i.e. CBs). This was achieved using the HELP (HpaII tiny fragment Enrichment by Ligation-mediated PCR) assay, which relies on differential digestion of genomic DNA by the isoschizomer enzymes HpaII and Msp. HELP is a robust and reproducible method that provides accurate and quantitative measurement of DNA methylation levels throughout the genome. Remarkably, we found that the DNA methylation profile of B-cells undergoes a significant shift as readily appreciated by hierarchical clustering. The epigenetic signatures of NBC and CB are differentiation-stage dependent and do not vary significantly between individuals. The coefficient of correlation between individuals was 0.98, as compared to the NBC vs. CB fractions 0.92–0.95. Supervised analysis demonstrated that 266 genes (P<0.001) were differentially methylated upon entry of NB-cells into the GC reaction. We further correlated the methylation status of these genes with their gene expression level. The most heavily affected pathways by differential methylation and concordant expression in naïve B-cells were the Jak/STAT and MAP3K signaling pathways, while in CBs the p38 MAPK pathway and Ikaros family of genes were most affected. Given the epigenetic reprogramming observed in CBs vs. NBCs, along with the need for maintenance of methylation during rapid replication, we predicted that DNA methyltransferase (DNMT) enzymes play a critical role in centroblasts. By performing QPCR and Western blots on isolated fractions of human tonsilar lymphocytes and anatomical localization by immunohistochemistry, we found that DNMTs have a complex temporal and combinatorial expression pattern whereby DNMT1 was the main methyltransferase detectable in centroblasts. Additionally we studied 10 DLBCL cell lines and a panel of primary DLBCL (n=176 for mRNA and 70 for protein) for DNMTs expression. Spearman Rank correlation analysis revealed that DNMT1 was preferentially highly expressed in GCB vs. ABC primary DLBCLs, as well as in BCR vs. OxPhos DLBCLs. Taken together, our data suggest that i) dynamic changes in epigenetic programming contribute to formation of GCs, ii) that DNMT1 may play both a de novo and maintenance methylation role in GC cells, iii) that DNMT1 is markedly upregulated in normal centroblasts and in DLBCLs with the BCR or GCB gene expression profiles and iv) specific therapeutic targeting of DNMT1 rather than non-specific global inhibition of DNA methylation could be a useful anti-lymphoma strategy for germinal center-derived DLBCLs.


2019 ◽  
Author(s):  
Michael J Reimer ◽  
Kirthi Pulakanti ◽  
Linzheng Shi ◽  
Alex Abel ◽  
Mingyu Liang ◽  
...  

Abstract Background: The Tet protein family (Tet1, Tet2, and Tet3) regulate DNA methylation through conversion of 5-methylcytosine to 5-hydroxymethylcytosine which can ultimately result in DNA demethylation and play a critical role during early mammalian development and pluripotency¬. While multiple groups have generated knockouts combining loss of different Tet proteins in murine embryonic stem cells (ESCs), differences in genetic background and approaches has made it difficult to directly compare results and discern the direct mechanism by which Tet proteins regulate the transcriptome. To address this concern, we utilized genomic editing in an isogenic pluripotent background which permitted a quantitative, flow-cytometry based measurement of pluripotency in combination with genome-wide assessment of gene expression and DNA methylation changes. Our ultimate goal was to generate a resource of large-scale datasets to permit hypothesis-generating experiments. Results: We demonstrate a quantitative disparity in the differentiation ability among Tet protein deletions, with Tet2 single knockout exhibiting the most severe defect, while loss of Tet1 ¬alone or combinations of Tet genes showed a quantitatively intermediate phenotype. Using a combination of transcriptomic and epigenomic approaches we demonstrate an increase in DNA hypermethylation and a divergence of transcriptional profiles in pluripotency among Tet deletions, with loss of Tet2 having the most profound effect in undifferentiated ESCs. Conclusions: We conclude that loss of Tet2 has the most dramatic effect both on the phenotype of ESCs and the transcriptome compared to other genotypes. While loss of Tet proteins increased DNA hypermethylation, especially in gene promoters, these changes in DNA methylation did not correlate with gene expression changes. Thus, while loss of different Tet proteins alters DNA methylation, this change does not appear to be directly responsible for transcriptome changes. Thus, loss of Tet proteins likely regulates the transcriptome epigenetically both through altering 5mC but also through additional mechanisms. Nonetheless, the transcriptome changes in pluripotent Tet2-/- ESCs compared to wild-type implies that the disparities in differentiation can be partially attributed to baseline alterations in gene expression.


2019 ◽  
Author(s):  
A Turchinovich ◽  
HM Surowy ◽  
AG Tonevitsky ◽  
B Burwinkel

AbstractThe DNA methyltransferase inhibitor decitabine (DAC) is a widely used drug for both fundamental epigenetics studies and anti-cancer therapy. Besides DNA demethylation, DAC also induces cell toxicity associated with DNA damage. The dual-mode of DAC action on cells provides a significant hurdle to study genes which expression is regulated by CpG methylation. In this work, we performed the analysis of global DNA methylation levels in cultured cancer cells after treatment with increasing doses of DAC and have found the U-shaped curve of the de-methylation efficacy induced by the drug. Specifically, high doses of DAC induced significantly lower DNA hypomethylation as compared to hundred-fold less concentrated doses. At the same time, the impact of DAC on cell viability was dose-dependent. These findings allowed dissecting the demethylation and the cell toxicity impact of DAC on gene expression in subsequent mRNA-seq experiments. Surprisingly, the number of genes that were upregulated due to DNA hypomethylation was comparable to the number of genes induced by DAC toxicity. Furthermore, we show that high DAC concentrations induce downregulation of housekeeping genes which are most widely used for RT-qPCR normalization (including GAPDH, actin and tubulin). The latter suggests that genes unaffected by DAC treatment would manifest themselves as upregulated when their expression is normalized on a downregulated housekeeping reference. Finally, we show that expression of most human oncogenes and tumor-suppressor genes remains unaffected after DAC treatment, and only a few of them were upregulated due to DNA hypomethylation. Our work stresses the importance of closely studying the correlation of the degree of DNA demethylation induced by varying doses of DAC with changes in gene expression levels to avoid erroneous conclusions regarding epigenetic silencing of a gene.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marina Amorim Rocha ◽  
Giovana Maria Breda Veronezi ◽  
Marina Barreto Felisbino ◽  
Maria Silvia Viccari Gatti ◽  
Wirla M. S. C. Tamashiro ◽  
...  

AbstractSodium valproate/valproic acid (VPA), a histone deacetylase inhibitor, and 5-aza-2-deoxycytidine (5-aza-CdR), a DNA methyltransferase 1 (DNMT1) inhibitor, induce DNA demethylation in several cell types. In HeLa cells, although VPA leads to decreased DNA 5-methylcytosine (5mC) levels, the demethylation pathway involved in this effect is not fully understood. We investigated this process using flow cytometry, ELISA, immunocytochemistry, Western blotting and RT-qPCR in G1 phase-arrested and proliferative HeLa cells compared to the presumably passive demethylation promoted by 5-aza-CdR. The results revealed that VPA acts predominantly on active DNA demethylation because it induced TET2 gene and protein overexpression, decreased 5mC abundance, and increased 5-hydroxy-methylcytosine (5hmC) abundance, in both G1-arrested and proliferative cells. However, because VPA caused decreased DNMT1 gene expression levels, it may also act on the passive demethylation pathway. 5-aza-CdR attenuated DNMT1 gene expression levels but increased TET2 and 5hmC abundance in replicating cells, although it did not affect the gene expression of TETs at any stage of the cell cycle. Therefore, 5-aza-CdR may also function in the active pathway. Because VPA reduces DNA methylation levels in non-replicating HeLa cells, it could be tested as a candidate for the therapeutic reversal of DNA methylation in cells in which cell division is arrested.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii300-iii300
Author(s):  
Michael Koldobskiy ◽  
Ashley Tetens ◽  
Allison Martin ◽  
Charles Eberhart ◽  
Eric Raabe ◽  
...  

Abstract Diffuse intrinsic pontine glioma (DIPG) is a childhood brainstem tumor with a dismal prognosis and no effective treatment. Recent studies point to a critical role for epigenetic dysregulation in this disease. Nearly 80% of DIPGs harbor mutations in histone H3 encoding replacement of lysine 27 with methionine (K27M), leading to global loss of the repressive histone H3K27 trimethylation mark, global DNA hypomethylation, and a distinct gene expression profile. However, a static view of the epigenome fails to capture the plasticity of cancer cells and their gene expression states. Recent studies across diverse cancers have highlighted the role of epigenetic variability as a driving force in tumor evolution. Epigenetic variability may underlie the heterogeneity and phenotypic plasticity of DIPG cells and allow for the selection of cellular traits that promote survival and resistance to therapy. We have recently formalized a novel framework for analyzing variability of DNA methylation directly from whole-genome bisulfite sequencing data, allowing computation of DNA methylation entropy at precise genomic locations. Using these methods, we have shown that DIPG exhibits a markedly disordered epigenome, with increased stochasticity of DNA methylation localizing to specific regulatory elements and genes. We evaluate the responsiveness of the DIPG epigenetic landscape to pharmacologic modulation in order to modify proliferation, differentiation state, and immune signaling in DIPG cells.


2019 ◽  
Author(s):  
Michael J Reimer ◽  
Kirthi Pulakanti ◽  
Linzheng Shi ◽  
Alex Abel ◽  
Mingyu Liang ◽  
...  

Abstract Background: The Tet protein family (Tet1, Tet2, and Tet3) regulate DNA methylation through conversion of 5-methylcytosine to 5-hydroxymethylcytosine which can ultimately result in DNA demethylation and play a critical role during early mammalian development and pluripotency¬. While multiple groups have generated knockouts combining loss of different Tet proteins in murine embryonic stem cells (ESCs), differences in genetic background and approaches has made it difficult to directly compare results and discern the direct mechanism by which Tet proteins regulate the transcriptome. To address this concern, we utilized genomic editing in an isogenic pluripotent background which permitted a quantitative, flow-cytometry based measurement of pluripotency in combination with genome-wide assessment of gene expression and DNA methylation changes. Our ultimate goal was to generate a resource of large-scale datasets to permit hypothesis-generating experiments. Results: We demonstrate a quantitative disparity in the differentiation ability among Tet protein deletions, with Tet2 single knockout exhibiting the most severe defect, while loss of Tet1 ¬alone or combinations of Tet genes showed a quantitatively intermediate phenotype. Using a combination of transcriptomic and epigenomic approaches we demonstrate an increase in DNA hypermethylation and a divergence of transcriptional profiles in pluripotency among Tet deletions, with loss of Tet2 having the most profound effect in undifferentiated ESCs. Conclusions: We conclude that loss of Tet2 has the most dramatic effect both on the phenotype of ESCs and the transcriptome compared to other genotypes. While loss of Tet proteins increased DNA hypermethylation, especially in gene promoters, these changes in DNA methylation did not correlate with gene expression changes. Thus, while loss of different Tet proteins alters DNA methylation, this change does not appear to be directly responsible for transcriptome changes. Thus, loss of Tet proteins likely regulates the transcriptome epigenetically both through altering 5mC but also through additional mechanisms. Nonetheless, the transcriptome changes in pluripotent Tet2-/- ESCs compared to wild-type implies that the disparities in differentiation can be partially attributed to baseline alterations in gene expression.


2019 ◽  
Author(s):  
Michael J Reimer ◽  
Kirthi Pulakanti ◽  
Linzheng Shi ◽  
Alex Abel ◽  
Mingyu Liang ◽  
...  

Abstract Background: The Tet protein family (Tet1, Tet2, and Tet3) regulate DNA methylation through conversion of 5-methylcytosine to 5-hydroxymethylcytosine which can ultimately result in DNA demethylation and play a critical role during early mammalian development and pluripotency¬. While multiple groups have generated knockouts combining loss of different Tet proteins in murine embryonic stem cells (ESCs), differences in genetic background and approaches has made it difficult to directly compare results and discern the direct mechanism by which Tet proteins regulate the transcriptome. To address this concern, we utilized genomic editing in an isogenic pluripotent background which permitted a quantitative, flow-cytometry based measurement of pluripotency in combination with genome-wide assessment of gene expression and DNA methylation changes. Our ultimate goal was to generate a resource of large-scale datasets to permit hypothesis-generating experiments. Results: We demonstrate a quantitative disparity in the differentiation ability among Tet protein deletions, with Tet2 single knockout exhibiting the most severe defect, while loss of Tet1 ¬alone or combinations of Tet genes showed a quantitatively intermediate phenotype. Using a combination of transcriptomic and epigenomic approaches we demonstrate an increase in DNA hypermethylation and a divergence of transcriptional profiles in pluripotency among Tet deletions, with loss of Tet2 having the most profound effect in undifferentiated ESCs. Conclusions: We conclude that loss of Tet2 has the most dramatic effect both on the phenotype of ESCs and the transcriptome compared to other genotypes. While loss of Tet proteins increased DNA hypermethylation, especially in gene promoters, these changes in DNA methylation did not correlate with gene expression changes. Thus, while loss of different Tet proteins alters DNA methylation, this change does not appear to be directly responsible for transcriptome changes. Thus, loss of Tet proteins likely regulates the transcriptome epigenetically both through altering 5mC but also through additional mechanisms. Nonetheless, the transcriptome changes in pluripotent Tet2-/- ESCs compared to wild-type implies that the disparities in differentiation can be partially attributed to baseline alterations in gene expression.


2021 ◽  
Author(s):  
Sindy Gutschker ◽  
José Maria Corral ◽  
Alfred Schmiedl ◽  
Frank Ludewig ◽  
Wolfgang Koch ◽  
...  

Abstract BackgroundDNA methylation is thought to influence the expression of genes, especially in response to changing environmental conditions and developmental changes. Sugar beet (Beta vulgaris ssp. vulgaris), and other biennial or perennial plants are inevitably exposed to fluctuating temperatures throughout their lifecycle and might even require such stimulus to acquire floral competence. Therefore, plants such as beets, need to fine-tune their epigenetic makeup to ensure phenotypic plasticity towards changing environmental conditions while at the same time steering essential developmental processes. Different crop species may show opposing reactions towards the same abiotic stress, or, vice versa, identical species may respond differently depending on the specific kind of stress. ResultsIn this study, we investigated common effects of cold treatment on genome-wide DNA methylation and gene expression of two Beta vulgaris accessions via multi-omics data analysis. Cold exposure resulted in a pronounced reduction of DNA methylation levels, which particularly affected methylation in CHH context (and to a lesser extent CHG) and was accompanied by transcriptional downregulation of the chromomethyltransferase CMT2 and strong upregulation of several genes mediating active DNA demethylation. Conclusion Integration of methylomic and transcriptomic data revealed that, rather than methylation having directly influenced expression, epigenetic modifications correlated with changes in expression of known players involved in DNA (de)methylation. In particular, cold triggered upregulation of genes putatively contributing to DNA demethylation via the ROS1 pathway. Our observations suggest that these transcriptional responses precede the cold-induced global DNA-hypomethylation in non-CpG, preparing beets for additional transcriptional alterations necessary for adapting to upcoming environmental changes.


Sign in / Sign up

Export Citation Format

Share Document