scholarly journals Extractive concentrations and cellular level distributions change radially from outer to inner heartwood in Scots pine

2020 ◽  
Author(s):  
Tiina Belt ◽  
Martti Venäläinen ◽  
Michael Altgen ◽  
Anni Harju ◽  
Lauri Rautkari

Abstract The heartwood of many wood species is rich in extractives, which improve the wood material’s resistance to biological attack. Their concentration is generally higher in outer than inner heartwood, but the exact radial changes in aging heartwood remain poorly characterized. This investigation studied these radial changes in detail in Scots pine (Pinus sylvestris L.), using radial sample sequences prepared from three different trees. Stilbene and resin acid contents were first measured from bulk samples, after which the extractive contents of individual heartwood annual rings were investigated using Raman spectroscopy and fluorescence microscopy. Raman imaging and fluorescence microscopy were also used to study the cellular level distributions of extractives in different annual rings. Although there were substantial differences between the trees, the content and distribution of stilbenes seemed to follow a general radial trend. The results suggest that stilbenes are absorbed into heartwood tracheid cell walls from small stilbene-rich extractive deposits over several years and then eventually transform into non-extractable compounds in aging heartwood. Resin acids followed no consistent radial trends, but their content was strongly connected to the frequency of large extractive deposits in latewood tracheid lumens. The results highlight the variability of heartwood extractives: their content and distribution vary not only between trees but also between and even within the annual rings of a single tree. This high variability is likely to have important effects on the properties of heartwood and the utilization of heartwood timber.

Holzforschung ◽  
2002 ◽  
Vol 56 (5) ◽  
pp. 479-486 ◽  
Author(s):  
A. M. Harju ◽  
P. Kainulainen ◽  
M. Venäläinen ◽  
M. Tiitta ◽  
H. Viitanen

Summary The concentration of individual resin acids and the equilibrium moisture content at a relative humidity of 100% were studied in brown-rot resistant and susceptible Scots pine (Pinus sylvestris L.) heartwood. About 90% of the resin acids in the heartwood were of the abietane type, abietic acid being the most abundant. The concentration of resin acids was higher in the decay-resistant heartwood than in the decay-susceptible heartwood. Resin acids are presumably in part responsible for the decay resistance of Scots pine heartwood. However, no clear relationship was found between the concentration of resin acids and the equilibrium moisture content. The role of resin acids may also be ascribed to mechanisms other than their hydrophobic properties alone. The reasons for the slight differences in moisture content between the decay classes require further study.


Holzforschung ◽  
2003 ◽  
Vol 57 (4) ◽  
pp. 359-372 ◽  
Author(s):  
S. Willför ◽  
J. Hemming ◽  
M. Reunanen ◽  
B. Holmbom

Summary The phenolic and lipophilic extractives in the heartwood of knots from seven Scots pine trees were analysed by GC, GC-MS and HPSEC. The knots contained large amounts of phenolic stilbenes, 1–7% (w/w), and lignans, 0.4–3% (w/w), while the stemwood contained around 1% (w/w) of stilbenes and no detectable lignans. In young trees without stem heartwood the stilbene content in the knots was up to 200 times that in the stem. Some in-tree and between-tree variation was seen in the content of phenolic compounds in the knots. The ratio of pinosylvin monomethyl ether to pinosylvin was higher in the knots than in the stemwood. The most abundant lignan was nortrachelogenin, but also matairesinol, secoisolariciresinol and liovil were present in small amounts in the knots. The knots also contained a complex mixture of lignan-like compounds, here called oligolignans. The flavonoid pinocembrin was present in both stemwood and knots in amounts below 0.02% (w/w). The stilbene concentration in the radial direction, from the pith to the outer branch, decreased or was on the same level inside the stem, while it decreased markedly in the outer branch. The lignan concentration was on the same level or decreased slightly inside the stem, while it decreased markedly in the branches and became almost non-existent within 10 cm out in the branches. The knots contained large amounts (4.5–32% (w/w)) of lipophilic extractives, mainly resin acids. Some in-tree and between-tree variation was seen for the resin acids. The abietane-type resin acids dominated over the pimarane-type acids and abietic acid was the most abundant resin acid in the knots and in stem heartwood. The amount of resin acids in the radial direction decreased or was on the same level inside the stem, while a clear decrease was detected in the branches. The profile of the distribution of resin acids and phenolic compounds was similar. The knots also contained up to 0.5% (w/w) of diterpenyl aldehydes.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 192
Author(s):  
Erkki Verkasalo ◽  
Veikko Möttönen ◽  
Marja Roitto ◽  
Jouko Vepsäläinen ◽  
Anuj Kumar ◽  
...  

This study aimed to identify and quantify phenolic and resin acid extractive compounds in Scots pine stemwood and sawmill residues in four climatic regions of Finland to evaluate their most optimal sources for bio-based chemical biorefining and bioenergy products. The sample consisted of 140 trees from 28 stands, and sawdust lots from 11 log stands. NMR for the overall extractive analysis and HPLC for the quantitative estimation of phenolic and resin acid compounds were employed. Correlation analysis, multivariate factor analysis, principle component analysis and multiple linear regression modelling were applied for statistical analysis. HPLC identified 12 extractive compounds and NMR five more resin acids. Pinosylvin (PS), pinosylvin monomethyl ether (PSMME), and partly neolignans/lignans occurred in the largest concentrations. Wood type caused the most variation, heartwood having larger concentrations than sapwood (sawdust between them). Regional differences in the concentrations were smaller, but factor analysis distinguished the northern and the southern regions into their own groups. The results indicated higher concentrations of PS, PSMME, and vanillic acid in southern regions and those of, e.g., PSMME glycoside, lignan 2, and neolignan 1 in northern regions. The rather low concentrations of extractives in stemwood and sawdust imply value-added products, efficient sorting and/or large raw material volumes.


2008 ◽  
Vol 56 (3) ◽  
pp. 341-348
Author(s):  
P. Pepó ◽  
A. Kovács

Cryopreservation appears to be a suitable solution for the maintenance of potato germplasms. The protocol described in this paper can be applied for the vitrification and preservation of meristems. During histo-cytological studies it is possible to observe modifications at the cellular level and to understand the adaptive mechanism to low temperatures. Control potato meristem tissue contained a number of meristematic cells with a gradient of differentiation. After freezing there were a large number of vacuolated cells, some of which exhibited broken cell walls and plasmolysis. The thickening of the cell wall, giving them a sinuous appearance, was observed after freezing and thawing the meristems, with ruptures of the cuticle and epidermal layer.


2006 ◽  
Vol 34 (6) ◽  
pp. 1209-1214 ◽  
Author(s):  
B. Hamberger ◽  
J. Bohlmann

Diterpene resin acids, together with monoterpenes and sesquiterpenes, are the most prominent defence chemicals in conifers. These compounds belong to the large group of structurally diverse terpenoids formed by enzymes known as terpenoid synthases. CYPs (cytochrome P450-dependent mono-oxygenases) can further increase the structural diversity of these terpenoids. While most terpenoids are characterized as specialized or secondary metabolites, some terpenoids, such as the phytohormones GA (gibberellic acid), BRs (brassinosteroids) and ABA (abscisic acid), have essential functions in plant growth and development. To date, very few CYP genes involved in conifer terpenoid metabolism have been functionally characterized and were limited to two systems, yew (Taxus) and loblolly pine (Pinus taeda). The characterized yew CYP genes are involved in taxol diterpene biosynthesis, while the only characterized pine terpenoid CYP gene is part of DRA (diterpene resin acid) biosynthesis. These CYPs from yew and pine are members of two apparently conifer-specific CYP families within the larger CYP85 clan, one of four plant CYP multifamily clans. Other CYP families within the CYP85 clan were characterized from a variety of angiosperms with functions in terpenoid phytohormone metabolism of GA, BR, and ABA. The recent development of EST (expressed sequence tag) and FLcDNA (where FL is full-length) sequence databases and cDNA collections for species of two conifers, spruce (Picea) and pine, allows for the discovery of new terpenoid CYPs in gymnosperms by means of large-scale sequence mining, phylogenetic analysis and functional characterization. Here, we present a snapshot of conifer CYP data mining, discovery of new conifer CYPs in all but one family within the CYP85 clan, and suggestions for their functional characterization. This paper will focus on the discovery of conifer CYPs associated with diterpene metabolism and CYP with possible functions in the formation of GA, BR, and ABA in conifers.


Holzforschung ◽  
2004 ◽  
Vol 58 (5) ◽  
pp. 483-488 ◽  
Author(s):  
Christian Hansmann ◽  
Manfred Schwanninger ◽  
Barbara Stefke ◽  
Barbara Hinterstoisser ◽  
Wolfgang Gindl

Abstract Spruce and birch earlywood was acetylated to different weight percent gains using three different acetylation procedures. The absorbance spectra of secondary cell wall and compound cell corner middle lamella were determined by means of UV microscopy. Analysis of the spectra showed that the characteristic lignin absorbance peak in the UV spectrum of wood around 280 nm shifted to shorter wavelengths in acetylated samples. A distinct relationship between achieved weight percent gains after acetylation and observed spectral shifts could be established revealing a certain potential to measure acetylation on a cellular level by means of UV microscopy.


1996 ◽  
Vol 74 (4) ◽  
pp. 599-606 ◽  
Author(s):  
Elizabeth S. Tomlin ◽  
John H. Borden ◽  
Harold D. Pierce Jr.

Cortical resin acids were analyzed both quantitatively and qualitatively among 10 provenances and 11 genotypes of Sitka spruce, Picea sitchensis Bong (Carr.), putatively resistant to the white pine weevil, Pissodes strobi (Peck), and compared with susceptible trees. Trees in 5 of the 11 resistant genotypes had significantly greater amounts of cortical resin acid than susceptible trees. Of seven individual acids analyzed, pimaric, isopimaric, levopimaric, dehydroabietic, abietic, and neoabietic acid, but not palustric acid, were found in significantly greater amounts in trees from resistant than susceptible provenances. Eighteen percent of the variation in resin acid content could be accounted for by variation in the capacity of cortical resin ducts, indicating that the other 82% of variation is a result of differences in resin acid concentration in the resin. Trees with very high resin acid levels may have a greater capacity for resinosis than susceptible trees, may deter feeding, or may produce resin that is toxic to eggs and larvae. Canonical discriminant analysis revealed that several resistant clones, particularly two from the Kitwanga provenance, could be distinguished from others on the basis of their resin acid profiles. Because it separated trees on the basis of genotype, but not according to degree of resistance, canonical discriminant analysis may be more useful in "chemotyping" trees than in screening for resistance. Keywords: Picea, cortex, resin acids, Pissodes strobi, resistance.


Sign in / Sign up

Export Citation Format

Share Document