scholarly journals Extractives of Stemwood and Sawmill Residues of Scots Pine (Pinus sylvestris L.) for Biorefining in Four Climatic Regions in Finland—Phenolic and Resin Acid Compounds

Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 192
Author(s):  
Erkki Verkasalo ◽  
Veikko Möttönen ◽  
Marja Roitto ◽  
Jouko Vepsäläinen ◽  
Anuj Kumar ◽  
...  

This study aimed to identify and quantify phenolic and resin acid extractive compounds in Scots pine stemwood and sawmill residues in four climatic regions of Finland to evaluate their most optimal sources for bio-based chemical biorefining and bioenergy products. The sample consisted of 140 trees from 28 stands, and sawdust lots from 11 log stands. NMR for the overall extractive analysis and HPLC for the quantitative estimation of phenolic and resin acid compounds were employed. Correlation analysis, multivariate factor analysis, principle component analysis and multiple linear regression modelling were applied for statistical analysis. HPLC identified 12 extractive compounds and NMR five more resin acids. Pinosylvin (PS), pinosylvin monomethyl ether (PSMME), and partly neolignans/lignans occurred in the largest concentrations. Wood type caused the most variation, heartwood having larger concentrations than sapwood (sawdust between them). Regional differences in the concentrations were smaller, but factor analysis distinguished the northern and the southern regions into their own groups. The results indicated higher concentrations of PS, PSMME, and vanillic acid in southern regions and those of, e.g., PSMME glycoside, lignan 2, and neolignan 1 in northern regions. The rather low concentrations of extractives in stemwood and sawdust imply value-added products, efficient sorting and/or large raw material volumes.


Holzforschung ◽  
2003 ◽  
Vol 57 (4) ◽  
pp. 359-372 ◽  
Author(s):  
S. Willför ◽  
J. Hemming ◽  
M. Reunanen ◽  
B. Holmbom

Summary The phenolic and lipophilic extractives in the heartwood of knots from seven Scots pine trees were analysed by GC, GC-MS and HPSEC. The knots contained large amounts of phenolic stilbenes, 1–7% (w/w), and lignans, 0.4–3% (w/w), while the stemwood contained around 1% (w/w) of stilbenes and no detectable lignans. In young trees without stem heartwood the stilbene content in the knots was up to 200 times that in the stem. Some in-tree and between-tree variation was seen in the content of phenolic compounds in the knots. The ratio of pinosylvin monomethyl ether to pinosylvin was higher in the knots than in the stemwood. The most abundant lignan was nortrachelogenin, but also matairesinol, secoisolariciresinol and liovil were present in small amounts in the knots. The knots also contained a complex mixture of lignan-like compounds, here called oligolignans. The flavonoid pinocembrin was present in both stemwood and knots in amounts below 0.02% (w/w). The stilbene concentration in the radial direction, from the pith to the outer branch, decreased or was on the same level inside the stem, while it decreased markedly in the outer branch. The lignan concentration was on the same level or decreased slightly inside the stem, while it decreased markedly in the branches and became almost non-existent within 10 cm out in the branches. The knots contained large amounts (4.5–32% (w/w)) of lipophilic extractives, mainly resin acids. Some in-tree and between-tree variation was seen for the resin acids. The abietane-type resin acids dominated over the pimarane-type acids and abietic acid was the most abundant resin acid in the knots and in stem heartwood. The amount of resin acids in the radial direction decreased or was on the same level inside the stem, while a clear decrease was detected in the branches. The profile of the distribution of resin acids and phenolic compounds was similar. The knots also contained up to 0.5% (w/w) of diterpenyl aldehydes.



Holzforschung ◽  
2002 ◽  
Vol 56 (5) ◽  
pp. 479-486 ◽  
Author(s):  
A. M. Harju ◽  
P. Kainulainen ◽  
M. Venäläinen ◽  
M. Tiitta ◽  
H. Viitanen

Summary The concentration of individual resin acids and the equilibrium moisture content at a relative humidity of 100% were studied in brown-rot resistant and susceptible Scots pine (Pinus sylvestris L.) heartwood. About 90% of the resin acids in the heartwood were of the abietane type, abietic acid being the most abundant. The concentration of resin acids was higher in the decay-resistant heartwood than in the decay-susceptible heartwood. Resin acids are presumably in part responsible for the decay resistance of Scots pine heartwood. However, no clear relationship was found between the concentration of resin acids and the equilibrium moisture content. The role of resin acids may also be ascribed to mechanisms other than their hydrophobic properties alone. The reasons for the slight differences in moisture content between the decay classes require further study.



2020 ◽  
Author(s):  
Tiina Belt ◽  
Martti Venäläinen ◽  
Michael Altgen ◽  
Anni Harju ◽  
Lauri Rautkari

Abstract The heartwood of many wood species is rich in extractives, which improve the wood material’s resistance to biological attack. Their concentration is generally higher in outer than inner heartwood, but the exact radial changes in aging heartwood remain poorly characterized. This investigation studied these radial changes in detail in Scots pine (Pinus sylvestris L.), using radial sample sequences prepared from three different trees. Stilbene and resin acid contents were first measured from bulk samples, after which the extractive contents of individual heartwood annual rings were investigated using Raman spectroscopy and fluorescence microscopy. Raman imaging and fluorescence microscopy were also used to study the cellular level distributions of extractives in different annual rings. Although there were substantial differences between the trees, the content and distribution of stilbenes seemed to follow a general radial trend. The results suggest that stilbenes are absorbed into heartwood tracheid cell walls from small stilbene-rich extractive deposits over several years and then eventually transform into non-extractable compounds in aging heartwood. Resin acids followed no consistent radial trends, but their content was strongly connected to the frequency of large extractive deposits in latewood tracheid lumens. The results highlight the variability of heartwood extractives: their content and distribution vary not only between trees but also between and even within the annual rings of a single tree. This high variability is likely to have important effects on the properties of heartwood and the utilization of heartwood timber.



2020 ◽  
Vol 9 (1) ◽  
pp. 55
Author(s):  
María Florencia Eberhardt ◽  
José Matías Irazoqui ◽  
Ariel Fernando Amadio

Stabilization ponds are a common treatment technology for wastewater generated by dairy industries. Large proportions of cheese whey are thrown into these ponds, creating an environmental problem because of the large volume produced and the high biological and chemical oxygen demands. Due to its composition, mainly lactose and proteins, it can be considered as a raw material for value-added products, through physicochemical or enzymatic treatments. β-Galactosidases (EC 3.2.1.23) are lactose modifying enzymes that can transform lactose in free monomers, glucose and galactose, or galactooligosacharides. Here, the identification of novel genes encoding β-galactosidases, identified via whole-genome shotgun sequencing of the metagenome of dairy industries stabilization ponds is reported. The genes were selected based on the conservation of catalytic domains, comparing against the CAZy database, and focusing on families with β-galactosidases activity (GH1, GH2 and GH42). A total of 394 candidate genes were found, all belonging to bacterial species. From these candidates, 12 were selected to be cloned and expressed. A total of six enzymes were expressed, and five cleaved efficiently ortho-nitrophenyl-β-galactoside and lactose. The activity levels of one of these novel β-galactosidase was higher than other enzymes reported from functional metagenomics screening and higher than the only enzyme reported from sequence-based metagenomics. A group of novel mesophilic β-galactosidases from diary stabilization ponds’ metagenomes was successfully identified, cloned and expressed. These novel enzymes provide alternatives for the production of value-added products from dairy industries’ by-products.



2021 ◽  
Author(s):  
Juha Kaitera ◽  
Juha Piispanen ◽  
Ulrich Bergmann


PeerJ ◽  
2019 ◽  
Vol 6 ◽  
pp. e6186 ◽  
Author(s):  
Ting-Ting Jiang ◽  
Yan Liang ◽  
Xiang Zhou ◽  
Zi-Wei Shi ◽  
Zhi-Jun Xin

Background Sweet sorghum bagasse (SSB), comprising both a dermal layer and pith, is a solid waste generated by agricultural activities. Open burning was previously used to treat agricultural solid waste but is harmful to the environment and human health. Recent reports showed that certain techniques can convert this agricultural waste into valuable products. While SSB has been considered an attractive raw material for sugar extraction and the production of value-added products, the pith root in the SSB can be difficult to process. Therefore, it is necessary to pretreat bagasse before conventional hydrolysis. Methods A thorough analysis and comparison of various pretreatment methods were conducted based on physicochemical and microscopic approaches. The responses of agricultural SSB stem pith with different particle sizes to pretreatment temperature, acid and alkali concentration and enzyme dosage were investigated to determine the optimal pretreatment. The integrated methods are beneficial to the utilization of carbohydrate-based and unknown compounds in agricultural solid waste. Results Acid (1.5−4.5%, v/v) and alkali (5−8%, w/v) reagents were used to collect cellulose from different meshes of pith at 25–100 °C. The results showed that the use of 100 mesh pith soaked in 8% (w/v) NaOH solution at 100 °C resulted in 32.47% ± 0.01% solid recovery. Follow-up fermentation with 3% (v/v) acid and 6.5% (w/v) alkali at 50 °C for enzymolysis was performed with the optimal enzyme ratio. An analysis of the surface topography and porosity before and after pretreatment showed that both the pore size of the pith and the amount of exposed cellulose increased as the mesh size increased. Interestingly, various compounds, including 42 compounds previously known to be present and 13 compounds not previously known to be present, were detected in the pretreatment liquid, while 10 types of monosaccharides, including D-glucose, D-xylose and D-arabinose, were found in the enzymatic solution. The total monosaccharide content of the pith was 149.48 ± 0.3 mg/g dry matter. Discussion An integrated technique for obtaining value-added products from sweet sorghum pith is presented in this work. Based on this technique, lignin and hemicellulose were effectively broken down, amorphous cellulose was obtained and all sugars in the sweet sorghum pith were hydrolysed into monosaccharides. A total of 42 compounds previously found in these materials, including alcohol, ester, acid, alkene, aldehyde ketone, alkene, phenolic and benzene ring compounds, were detected in the pretreatment pith. In addition, several compounds that had not been previously observed in these materials were found in the pretreatment solution. These findings will improve the transformation of lignocellulosic biomass into sugar to create a high-value-added coproduct during the integrated process and to maximize the potential utilization of agricultural waste in current biorefinery processing.



2006 ◽  
Vol 34 (6) ◽  
pp. 1209-1214 ◽  
Author(s):  
B. Hamberger ◽  
J. Bohlmann

Diterpene resin acids, together with monoterpenes and sesquiterpenes, are the most prominent defence chemicals in conifers. These compounds belong to the large group of structurally diverse terpenoids formed by enzymes known as terpenoid synthases. CYPs (cytochrome P450-dependent mono-oxygenases) can further increase the structural diversity of these terpenoids. While most terpenoids are characterized as specialized or secondary metabolites, some terpenoids, such as the phytohormones GA (gibberellic acid), BRs (brassinosteroids) and ABA (abscisic acid), have essential functions in plant growth and development. To date, very few CYP genes involved in conifer terpenoid metabolism have been functionally characterized and were limited to two systems, yew (Taxus) and loblolly pine (Pinus taeda). The characterized yew CYP genes are involved in taxol diterpene biosynthesis, while the only characterized pine terpenoid CYP gene is part of DRA (diterpene resin acid) biosynthesis. These CYPs from yew and pine are members of two apparently conifer-specific CYP families within the larger CYP85 clan, one of four plant CYP multifamily clans. Other CYP families within the CYP85 clan were characterized from a variety of angiosperms with functions in terpenoid phytohormone metabolism of GA, BR, and ABA. The recent development of EST (expressed sequence tag) and FLcDNA (where FL is full-length) sequence databases and cDNA collections for species of two conifers, spruce (Picea) and pine, allows for the discovery of new terpenoid CYPs in gymnosperms by means of large-scale sequence mining, phylogenetic analysis and functional characterization. Here, we present a snapshot of conifer CYP data mining, discovery of new conifer CYPs in all but one family within the CYP85 clan, and suggestions for their functional characterization. This paper will focus on the discovery of conifer CYPs associated with diterpene metabolism and CYP with possible functions in the formation of GA, BR, and ABA in conifers.



Oecologia ◽  
1986 ◽  
Vol 70 (1) ◽  
pp. 77-84 ◽  
Author(s):  
Stig Larsson ◽  
Christer Bj�rkman ◽  
Rolf Gref


Author(s):  
Sebastian Ponce ◽  
Stefanie Wesinger ◽  
Daniela Ona ◽  
Daniela Almeida Streitwieser ◽  
Jakob Albert

AbstractThe selective oxidative conversion of seven representative fully characterized biomasses recovered as secondary feedstocks from the agroindustry is reported. The reaction system, known as the “OxFA process,” involves a homogeneous polyoxometalate catalyst (H8PV5Mo7O40), gaseous oxygen, p-toluene sulfonic acid, and water as solvent. It took place at 20 bar and 90 °C and transformed agro-industrial wastes, such as coffee husks, cocoa husks, palm rachis, fiber and nuts, sugarcane bagasse, and rice husks into biogenic formic acid, acetic acid, and CO2 as sole products. Even though all samples were transformed; remarkably, the reaction obtains up to 64, and 55% combined yield of formic and acetic acid for coffee and cocoa husks as raw material within 24 h, respectively. In addition to the role of the catalysts and additive for promoting the reaction, the influence of biomass components (hemicellulose, cellulose and lignin) into biogenic formic acid formation has been also demonstrated. Thus, these results are of major interest for the application of novel oxidation techniques under real recovered biomass for producing value-added products. Graphical abstract



Author(s):  
Ljudmila Romaniuk ◽  

International economic activity occupies a special place in a complex system of the global economic relations. It reflects the mutual economic dependence of trade and economic activities of different countries of the world. The significance of the development of international economic performance of each country is growing. The purpose of the article is to determine the current state and trends of international economic performance of Ukraine, taking into account changes in the external environment. SWOT-analysis was introduced to identify strengths, weaknesses, opportunities, threats and ways to overcome weaknesses, solve problems in international economic activity, use strengths and opportunities. International economic activity is a powerful factor in the development of the country's economy and has a significant potential in regard of natural, economic and human resources, but the study has also revealed problems and negative trends. To identify trends in the effectiveness of the country's international economic activity, export-import performance indicators for 2019, 2020 and similar indicators for 2013 were analyzed. In 2020 a decline in exports in the machine-building industry is observed. Furthermore, the exports are dominated by the raw material component. The growth rate of exported goods refers to industries with a small share of value added. At the same time, imports are dominated by high-tech products, indicating a lack of strategy of technical and technological development, which leads to the deindustrialization of the country, which is a significant threat to the economy of Ukraine as a whole and its international economic activity. In the context of economic globalization, the importance of international economic relations is growing. To increase the efficiency of international economic performance it is crucial to address a number of domestic issues: stabilization of political situation, termination of military actions in the east of the country, overcoming corruption, ensuring technical and technological development, implementation of innovations at enterprises, development and implementation of multi-vector strategy, implementation of the strategy of public diplomacy in order to build a positive image of Ukraine. Further research will focus on assessing the effectiveness of international economic activity, identifying threats to national competitiveness and elaborating recommendations for overcoming them.



Sign in / Sign up

Export Citation Format

Share Document