Creep Recovery of Wet Gluten and High-Molecular-Weight Glutenin Subunit Composition: Relationship with Viscoelasticity of Dough and Breadmaking Quality of Hard Red Winter Wheat

2017 ◽  
Vol 94 (2) ◽  
pp. 223-229 ◽  
Author(s):  
Zorba Josué Hernández-Estrada ◽  
Patricia Rayas-Duarte ◽  
Juan de Dios Figueroa Cárdenas
2013 ◽  
Vol 38 (7) ◽  
pp. 1205-1211
Author(s):  
Xin XU ◽  
Xiao-Jun LI ◽  
Ling-Li ZHANG ◽  
Xiu-Quan LI ◽  
Xin-Ming YANG ◽  
...  

2010 ◽  
Vol 58 (2) ◽  
pp. 283-289 ◽  
Author(s):  
Yohei Terasawa ◽  
Kanenori Takata ◽  
Hisashi Hirano ◽  
Kenji Kato ◽  
Taihachi Kawahara ◽  
...  

1992 ◽  
Vol 72 (1) ◽  
pp. 13-19 ◽  
Author(s):  
B. J. Zebarth ◽  
R. W. Sheard

Several previous studies have reported that grain yield of cereal crops was greater from multiple than from single nitrogen (N) applications. The purpose of the study was to determine the influence of the time and rate of N application on the yield and quality of hard red winter wheat grown in Ontario. One experiment was conducted in each of 2 yr using a factorial arrangement of treatments. Factors were rate of N application (40, 80, 120, 160, 200 or 240 kg N ha−1), and timing of N application (100/0/0, 75/25/0, 50/50/0 or 25/50/25 percent of the N applied at Zadok’s growth stages 22/32/45). Early N application reduced grain yield in a year of below-average precipitation, increased grain yield in a year of average precipitation, and increased straw yield in both years. Late N application increased grain crude protein concentration and harvest index in both years. Given the lack of a consistent yield increase and the added cost of application, it is unlikely that multiple N applications will be economical for hard red winter wheat production in Ontario.Key words: Triticum aestivum, intensive cereal management, yield components, wheat


2000 ◽  
Vol 51 (6) ◽  
pp. 673 ◽  
Author(s):  
H. Nakamura

The endosperm storage proteins of 174 Japanese wheat (Triticum aestivum) landraces were fractionated by sodium dodecyl sulfate polyacrylamide gel electrophoresis to determine their high-molecular-weight (HMW) glutenin subunit composition. These are alleles for complex gene loci, Glu-A1, Glu-B1, and Glu-D1, that are present in Japanese hexaploid wheat landraces. These were identified by comparison with the subunit mobility previously found in hexaploid wheat. Twenty-four different, major glutenin HMW subunits were identified. Each landrace contained 3–5 subunits, and 17 different glutenin subunit patterns were observed for 13 alleles in Japanese landraces. Japanese landraces showed specific allelic variation in glutenin HMW subunits, different from those in non-Japanese hexaploid wheats.


Sign in / Sign up

Export Citation Format

Share Document