Influence of rate and timing of nitrogen fertilization on yield and quality of hard red winter wheat in Ontario

1992 ◽  
Vol 72 (1) ◽  
pp. 13-19 ◽  
Author(s):  
B. J. Zebarth ◽  
R. W. Sheard

Several previous studies have reported that grain yield of cereal crops was greater from multiple than from single nitrogen (N) applications. The purpose of the study was to determine the influence of the time and rate of N application on the yield and quality of hard red winter wheat grown in Ontario. One experiment was conducted in each of 2 yr using a factorial arrangement of treatments. Factors were rate of N application (40, 80, 120, 160, 200 or 240 kg N ha−1), and timing of N application (100/0/0, 75/25/0, 50/50/0 or 25/50/25 percent of the N applied at Zadok’s growth stages 22/32/45). Early N application reduced grain yield in a year of below-average precipitation, increased grain yield in a year of average precipitation, and increased straw yield in both years. Late N application increased grain crude protein concentration and harvest index in both years. Given the lack of a consistent yield increase and the added cost of application, it is unlikely that multiple N applications will be economical for hard red winter wheat production in Ontario.Key words: Triticum aestivum, intensive cereal management, yield components, wheat

2012 ◽  
Vol 92 (1) ◽  
pp. 191-193 ◽  
Author(s):  
D. B. Fowler

Fowler, D. B. 2012. Moats hard red winter wheat. Can. J. Plant Sci. 92: 191–193. Moats is a hard red winter wheat (Triticum aestivum L.) that is eligible for grades of the Canada Western Red Winter (CWRW) wheat class. It has excellent stem and leaf rust resistance and higher grain yield and protein concentration than the Central Winter Wheat Cooperative Registration Trial CWRW grain quality check cultivar, CDC Buteo. Its grain yield is similar to the high-yielding Registration Trial check cultivar, CDC Falcon, and lower than Accipiter, which is a more recent high-yielding winter wheat cultivar released in the Canada Western General Purpose wheat class. A suitable combination of grain quality, rust resistance and yield make Moats widely adapted in the winter wheat production area of western Canada.


Crop Science ◽  
1989 ◽  
Vol 29 (3) ◽  
pp. 626-631 ◽  
Author(s):  
T. S. Cox ◽  
M. D. Shogren ◽  
R. G. Sears ◽  
T. J. Martin ◽  
L. C. Bolte

2006 ◽  
Vol 34 (1) ◽  
pp. 457-460 ◽  
Author(s):  
Georg Drezner ◽  
Kresimir Dvojkovic ◽  
Daniela Horvat ◽  
Dario Novoselovic ◽  
Alojzije Lalic ◽  
...  

2017 ◽  
Vol 66 (26) ◽  
pp. 6637-6645 ◽  
Author(s):  
Weijie Xue ◽  
Yanlai Han ◽  
Jinfang Tan ◽  
Yi Wang ◽  
Guowen Wang ◽  
...  

2015 ◽  
Vol 105 (5) ◽  
pp. 621-627 ◽  
Author(s):  
Gautam P. Pradhan ◽  
Qingwu Xue ◽  
Kirk E. Jessup ◽  
Baozhen Hao ◽  
Jacob A. Price ◽  
...  

Wheat streak mosaic virus (WSMV) causes significant yield loss in hard red winter wheat in the U.S. Southern High Plains. Despite the prevalence of this pathogen, little is known about the physiological response of wheat to WSMV infection. A 2-year study was initiated to (i) investigate the effect of WSMV, inoculated at different development stages, on shoot and root growth, water use, water use efficiency (WUE), and photosynthesis and (ii) understand the relationships between yield and photosynthetic parameters during WSMV infection. Two greenhouse experiments were conducted with two wheat cultivars mechanically inoculated with WSMV at different developmental stages, from three-leaf to booting. WSMV inoculated early, at three- to five-leaf stage, resulted in a significant reduction in shoot biomass, root dry weight, and yield compared with wheat infected at the jointing and booting stages. However, even when inoculated as late as jointing, WSMV still reduced grain yield by at least 53%. Reduced tillers, shoot biomass, root dry weight, water use, and WUE contributed to yield loss under WSMV infection. However, infection by WSMV did not affect rooting depth and the number of seminal roots but reduced the number of nodal roots. Leaf photosynthetic parameters (chlorophyll [SPAD], net photosynthetic rate [Pn], stomatal conductance [Gs], intercellular CO2 concentration [Ci], and transpiration rate [Tr]) were reduced when infected by WSMV, and early infection reduced parameters more than late infection. Photosynthetic parameters had a linear relationship with grain yield and shoot biomass. The reduced Pn under WSMV infection was mainly in response to decreased Gs, Ci, and SPAD. The results of this study indicated that leaf chlorophyll and gas exchange parameters can be used to quantify WSMV effects on biomass and grain yield in wheat.


Sign in / Sign up

Export Citation Format

Share Document