Heat Stress at Different Grain Filling Stages Affects Fresh Waxy Maize Grain Yield and Quality

2015 ◽  
Vol 92 (3) ◽  
pp. 258-264 ◽  
Author(s):  
Huan Yang ◽  
Dalei Lu ◽  
Xin Shen ◽  
Xuemei Cai ◽  
Weiping Lu
2014 ◽  
Vol 91 (2) ◽  
pp. 189-194 ◽  
Author(s):  
Dalei Lu ◽  
Xuli Sun ◽  
Fabao Yan ◽  
Xin Wang ◽  
Renchao Xu ◽  
...  

Author(s):  
Qingjun Cao, Gang Li, Fentuan Yang, Xiaoli Jiang ◽  
Lamine Diallo, Enping Zhang ◽  
Fanli Kong

Delayed sowing (DS) is a critical factor influencing grain yield and quality under climate change. This study was conducted to determine maize grain yield and quality traits responses to DS and varied genotypes in rain-fed condition, northeast of China. Two typical hybrids ZD958 (higher starch type) and LM33 (higher protein type) and three sowing dates: 30 April (DS0) as normal, 10 May (DS10) and 20 May (DS20) were compared. Results demonstrated maize grain yield, biomass, kernel number per square, thousand kernel weight (TKW), grain nutrition yield, N concentration and grain test weight were significantly reduced by DS. Compared to high protein type LM33, high starch type ZD958 had a higher yield potential and lower yield reduction with delayed sowing. Grain yield loss under DS could be mainly attributed to reduction of the BMP and biomass, thereby leading to the reduction of TKW and kernels number per unit. DS didn’t affected grain nutritional content (starch, protein and oil), while significantly reduced grain nutrition yield of starch, oil and protein with delayed sowing. This study suggests that, early sowing should be recommended to the framers and varieties adjustments maybe a possible approach to reduce and compensate for the loss of yield caused by delayed sowing in rain-fed condition under climate change in NCP.


2014 ◽  
Vol 95 (1) ◽  
pp. 210-215 ◽  
Author(s):  
Dalei Lu ◽  
Xuemei Cai ◽  
Junyu Zhao ◽  
Xin Shen ◽  
Weiping Lu

Agronomy ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 302 ◽  
Author(s):  
Peng Ning ◽  
Yunfeng Peng ◽  
Felix Fritschi

Maize grain yield is considered to be highly associated with ear and leaf carbohydrate dynamics during the critical period bracketing silking and during the fast grain filling phase. However, a full understanding of how differences in N availability/plant N status influence carbohydrate dynamics and processes underlying yield formation remains elusive. Two field experiments were conducted to examine maize ear development, grain yield and the dynamics of carbohydrates in maize ear leaves and developing ears in response to differences in N availability. Increasing N availability stimulated ear growth during the critical two weeks bracketing silking and during the fast grain-filling phase, consequently resulting in greater maize grain yield. In ear leaves, sucrose and starch concentrations exhibited an obvious diurnal pattern at both silking and 20 days after silking, and N fertilization led to more carbon flux to sucrose biosynthesis than to starch accumulation. The elevated transcript abundance of key genes involved in starch biosynthesis and maltose export, as well as the sugar transporters (SWEETs) important for phloem loading, indicated greater starch turnover and sucrose export from leaves under N-fertilized conditions. In developing ears, N fertilization likely enhanced the cleavage of sucrose to glucose and fructose in the cob prior to and at silking and the synthesis from glucose and fructose to sucrose in the kernels after silking, and thus increasing kernel setting and filling. At the end, we propose a source-sink carbon partitioning framework to illustrates how N application influences carbon assimilation in leaves, transport, and conversions in developing reproductive tissues, ultimately leading to greater yield.


1994 ◽  
Vol 21 (6) ◽  
pp. 887 ◽  
Author(s):  
PJ Stone ◽  
ME Nicolas

Short periods of high temperature (> 35�C) are common during the post-anthesis period in Australian wheat crops and have recently been shown to significantly reduce grain yield and quality. In view of this, 75 cultivars of wheat were screened for tolerance to 3 days of high temperature (max. 40�C). Detailed results for grain yield and quality are presented for five wheat cultivars in order to illustrate the wide range of responses to short periods of high temperature. Individual kernel mass decreased by up to 23%, depending on variety, and the gliadin : glutenin ratio altered in the range -9 to +18% in response to high temperature treatment, also depending on variety. Noodle swelling power was significantly affected by heat in two cultivars, but there was no significant change due to heat in the apparent amylose content in any variety. The marked response of several yield and quality components to a heat treatment lasting only ca 5% of the grain-filling period suggests that starch and protein synthesis do not immediately andlor fully recover from short, severe heat stress. In addition, we conclude that wheat shows considerable genetic variability in tolerance to short periods of high temperature for both grain yield and quality.


Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 978
Author(s):  
Wenwen Cui ◽  
Quanhao Song ◽  
Bingyun Zuo ◽  
Qingfang Han ◽  
Zhikuan Jia

Dense plant cultivation is an efficient approach to improve maize production by maximizing the utilization of energy and nutrients. However, dense plant populations may aggravate the abortion rate of young grains, resulting in fewer kernels per ear. The rate and duration of grain-filling play decisive roles in maize grain yield. Therefore, to increase plant density, enhancing the grain-filling rate, extending the growth period of individual maize plants and regulating crop senescence would be the first priority. In this study, we examined the regulatory effects of GA4+7 under two application methods: shanks and silks were moistened by cotton full with GA4+7 solution at concentrations of 0, 10, 60, and 120 mg L−1. The results showed that GA4+7 improved the grain-filling rate by increasing the content of auxin, gibberellin, zeatin, and abscisic acid in grains compared to control plants. In addition, the auxin, gibberellin, and zeatin contents in the grains were positively and significantly correlated with the maximum grain weight and the maximum and mean grain-filling rates. Moreover, GA4+7 increased the activities of superoxide dismutases, catalases, and peroxidases and reduced the malondialdehyde content in leaves compared with untreated plants. At the concentration of 60 mg L−1, GA4+7 showed the greatest effect on shank and silk applications (Sh-60 and Si-60) followed by 10 mg L−1 (Sh-10) for shank treatment and 120 mg L−1 (Si-120) for silk treatment. Our results suggest that a concentration of 60 mg L−1 GA4+7 for shank and silk application may be efficiently used for changing the level of hormones in grains and antioxidant enzymes in ear leaves, which may be useful for enhancing grain-filling rate and delaying leaf senescence, resulting in an increase in maize grain yield.


Sign in / Sign up

Export Citation Format

Share Document