scholarly journals A Comparative Transcriptomic and Proteomic Analysis of Hexaploid Wheat’s Responses to Colonization by Bacillus velezensis and Gaeumannomyces graminis, Both Separately and Combined

2019 ◽  
Vol 32 (10) ◽  
pp. 1336-1347 ◽  
Author(s):  
Xingxing Kang ◽  
Lanhua Wang ◽  
Yu Guo ◽  
Muhammad Zain ul Arifeen ◽  
Xunchao Cai ◽  
...  

Tritrophic interactions involving a biocontrol agent, a pathogen, and a plant have been analyzed predominantly from the perspective of the biocontrol agent. To explore the adaptive strategies of wheat in response to beneficial, pathogenic, and combined microorganisms, we performed the first comprehensive transcriptomic, proteomic, and biochemical analysis in wheat roots after exposure to Bacillus velezensis CC09, Gaeumannomyces graminis var. tritici, and their combined colonization, respectively. The transcriptional or translational programming of wheat roots inoculated with beneficial B. velezensis showed mild alterations compared with that of pathogenic G. graminis var. tritici. However, the combination of B. velezensis and G. graminis var. tritici activated a larger transcriptional or translational program than for each single microorganism, although the gene expression pattern was similar to that of individual infection by G. graminis var. tritici, suggesting a prioritization of defense against G. graminis var. tritici infection. Surprisingly, pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity made wheat pretreated with B. velezensis more sensitive to subsequent G. graminis var. tritici infection. Additionally, B. velezensis triggered a salicylic acid (SA)-dependent mode of induced systemic resistance that resembles pathogen-induced systemic acquired resistance. Wheat plants mainly depend on SA-mediated resistance, and not that mediated by jasmonic acid (JA), against the necrotrophic pathogen G. graminis var. tritici. Moreover, SA–JA interactions resulted in antagonistic effects regardless of the type of microorganisms in wheat. Further enhancement of SA-dependent defense responses such as lignification to the combined infection was shown to reduce the level of induced JA-dependent defense against subsequent infection with G. graminis var. tritici. Altogether, our results demonstrate how the hexaploid monocot wheat responds to beneficial or pathogenic microorganisms and prolongs the onset of take-all disease through modulation of cell reprogramming and signaling events.

2003 ◽  
Vol 16 (2) ◽  
pp. 115-122 ◽  
Author(s):  
Olivier Klarzynski ◽  
Valérie Descamps ◽  
Bertrand Plesse ◽  
Jean-Claude Yvin ◽  
Bernard Kloareg ◽  
...  

Sulfated fucans are common structural components of the cell walls of marine brown algae. Using a fucan-degrading hydrolase isolated from a marine bacterium, we prepared sulfated fucan oligosaccharides made of mono- and disulfated fucose units alternatively bound by α-1,4 and α-1,3 glycosidic linkages, respectively. Here, we report on the elicitor activity of such fucan oligosaccharide preparations in tobacco. In suspension cell cultures, oligofucans at the dose of 200 μg ml−1 rapidly induced a marked alkalinization of the extracellular medium and the release of hydrogen peroxide. This was followed within a few hours by a strong stimulation of phenylalanine ammonia-lyase and lipoxygenase activities. Tobacco leaves treated with oligofucans locally accumulated salicylic acid (SA) and the phytoalexin scopoletin and expressed several pathogenesis-related (PR) proteins, but they displayed no symptoms of cell death. Fucan oligosaccharides also induced the systemic accumulation of SA and the acidic PR protein PR-1, two markers of systemic acquired resistance (SAR). Consistently, fucan oligosaccharides strongly stimulated both local and systemic resistance to tobacco mosaic virus (TMV). The use of transgenic plants unable to accumulate SA indicated that, as in the SAR primed by TMV, SA is required for the establishment of oligofucan-induced resistance.


Author(s):  
Eric C. Holmes ◽  
Yun-Chu Chen ◽  
Mary Beth Mudgett ◽  
Elizabeth S. Sattely

AbstractSystemic acquired resistance (SAR) is a mechanism that plants utilize to connect a local pathogen infection to global defense responses. N-hydroxy-pipecolic acid (NHP) and a glycosylated derivative are produced during SAR, yet their individual roles in the response have not yet been elucidated. Here we report that Arabidopsis thaliana UGT76B1 can generate glycosylated NHP (NHP-Glc) in vitro and when transiently expressed alongside Arabidopsis NHP biosynthetic genes in two Solanaceous plants. During infection, Arabidopsis ugt76b1 mutants do not accumulate NHP-Glc and accumulate less glycosylated salicylic acid (SA-Glc) than wild type plants. The metabolic changes in ugt76b1 mutant plants are accompanied by enhanced defense to the bacterial pathogen Pseudomonas syringae, suggesting that glycosylation of SAR molecules NHP and SA by UGT76B1 plays an important role in defense modulation. Transient expression of Arabidopsis UGT76B1 with the Arabidopsis NHP biosynthesis genes ALD1 and FMO1 in tomato increases NHP-Glc production and reduces NHP accumulation in local tissue, and abolishes the systemic resistance seen when expressing NHP-biosynthetic genes alone. These findings reveal that the glycosylation of NHP by UGT76B1 alters defense priming in systemic tissue and provide further evidence for the role of the NHP aglycone as the active metabolite in SAR signaling.


2002 ◽  
Vol 15 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Jurriaan Ton ◽  
Johan A. Van Pelt ◽  
L. C. Van Loon ◽  
Corné M. J. Pieterse

Salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are each involved in the regulation of basal resistance against different pathogens. These three signals play important roles in induced resistance as well. SA is a key regulator of pathogen-induced systemic acquired resistance (SAR), whereas JA and ET are required for rhizobacteria-mediated induced systemic resistance (ISR). Both types of induced resistance are effective against a broad spectrum of pathogens. In this study, we compared the spectrum of effectiveness of SAR and ISR using an oomycete, a fungal, a bacterial, and a viral pathogen. In noninduced Arabidopsis plants, these pathogens are primarily resisted through either SA-dependent basal resistance (Peronospora parasitica and Turnip crinkle virus [TCV]), JA/ET-dependent basal resistance responses (Alternaria brassicicola), or a combination of SA-, JA-, and ET-dependent defenses (Xanthomonas campestris pv. armoraciae). Activation of ISR resulted in a significant level of protection against A. brassicicola, whereas SAR was ineffective against this pathogen. Conversely, activation of SAR resulted in a high level of protection against P. parasitica and TCV, whereas ISR conferred only weak and no protection against P. parasitica and TCV, respectively. Induction of SAR and ISR was equally effective against X. campestris pv. armoraciae. These results indicate that SAR is effective against pathogens that in noninduced plants are resisted through SA-dependent defenses, whereas ISR is effective against pathogens that in noninduced plants are resisted through JA/ET-dependent defenses. This suggests that SAR and ISR constitute a reinforcement of extant SA- or JA/ET-dependent basal defense responses, respectively.


1998 ◽  
Vol 88 (7) ◽  
pp. 678-684 ◽  
Author(s):  
M. Maurhofer ◽  
C. Reimmann ◽  
P. Schmidli-Sacherer ◽  
S. Heeb ◽  
D. Haas ◽  
...  

Application of salicylic acid induces systemic acquired resistance in tobacco. pchA and pchB, which encode for the biosynthesis of salicylic acid in Pseudomonas aeruginosa, were cloned into two expression vectors, and these constructs were introduced into two root-colonizing strains of P. fluorescens. Introduction of pchBA into strain P3, which does not produce salicylic acid, rendered this strain capable of salicylic acid production in vitro and significantly improved its ability to induce systemic resistance in tobacco against tobacco necrosis virus. Strain CHA0 is a well-described biocontrol agent that naturally produces salicylic acid under conditions of iron limitation. Introduction of pchBA into CHA0 increased the production of salicylic acid in vitro and in the rhizosphere of tobacco, but did not improve the ability of CHA0 to induce systemic resistance in tobacco. In addition, these genes did not improve significantly the capacity of strains P3 and CHA0 to suppress black root rot of tobacco in a gnotobiotic system.


2019 ◽  
Vol 20 (5) ◽  
pp. 1211 ◽  
Author(s):  
Jingjing Zhang ◽  
Ziyu Ren ◽  
Yuqing Zhou ◽  
Zheng Ma ◽  
Yanqin Ma ◽  
...  

The circadian clock in plants synchronizes biological processes that display cyclic 24-h oscillation based on metabolic and physiological reactions. This clock is a precise timekeeping system, that helps anticipate diurnal changes; e.g., expression levels of clock-related genes move in synchrony with changes in pathogen infection and help prepare appropriate defense responses in advance. Salicylic acid (SA) is a plant hormone and immune signal involved in systemic acquired resistance (SAR)-mediated defense responses. SA signaling induces cellular redox changes, and degradation and rhythmic nuclear translocation of the non-expresser of PR genes 1 (NPR1) protein. Recent studies demonstrate the ability of the circadian clock to predict various potential attackers, and of redox signaling to determine appropriate defense against pathogen infection. Interaction of the circadian clock with redox rhythm promotes the balance between immunity and growth. We review here a variety of recent evidence for the intricate relationship between circadian clock and plant immune response, with a focus on the roles of redox rhythm and NPR1 in the circadian clock and plant immunity.


2019 ◽  
Vol 20 (11) ◽  
pp. 2849 ◽  
Author(s):  
Songwei Li ◽  
Yijie Dong ◽  
Lin Li ◽  
Yi Zhang ◽  
Xiufen Yang ◽  
...  

Panama disease, or Fusarium wilt, the most serious disease in banana cultivation, is caused by Fusarium oxysporum f. sp. cubense (FOC) and has led to great economic losses worldwide. One effective way to combat this disease is by enhancing host plant resistance. The cerato-platanin protein (CPP) family is a group of small secreted cysteine-rich proteins in filamentous fungi. CPPs as elicitors can trigger the immune system resulting in defense responses in plants. In this study, we characterized a novel cerato-platanin-like protein in the secretome of Fusarium oxysporum f. sp. cubense race 4 (FOC4), named FocCP1. In tobacco, the purified recombinant FocCP1 protein caused accumulation of reactive oxygen species (ROS), formation of necrotic reaction, deposition of callose, expression of defense-related genes, and accumulation of salicylic acid (SA) and jasmonic acid (JA) in tobacco. These results indicated that FocCP1 triggered a hypersensitive response (HR) and systemic acquired resistance (SAR) in tobacco. Furthermore, FocCP1 enhanced resistance tobacco mosaic virus (TMV) disease and Pseudomonas syringae pv. tabaci 6605 (Pst. 6605) infection in tobacco and improved banana seedling resistance to FOC4. All results provide the possibility of further research on immune mechanisms of plant and pathogen interactions, and lay a foundation for a new biological strategy of banana wilt control in the future.


2019 ◽  
Vol 20 (3) ◽  
pp. 671 ◽  
Author(s):  
Ning Li ◽  
Xiao Han ◽  
Dan Feng ◽  
Deyi Yuan ◽  
Li-Jun Huang

During their lifetime, plants encounter numerous biotic and abiotic stresses with diverse modes of attack. Phytohormones, including salicylic acid (SA), ethylene (ET), jasmonate (JA), abscisic acid (ABA), auxin (AUX), brassinosteroid (BR), gibberellic acid (GA), cytokinin (CK) and the recently identified strigolactones (SLs), orchestrate effective defense responses by activating defense gene expression. Genetic analysis of the model plant Arabidopsis thaliana has advanced our understanding of the function of these hormones. The SA- and ET/JA-mediated signaling pathways were thought to be the backbone of plant immune responses against biotic invaders, whereas ABA, auxin, BR, GA, CK and SL were considered to be involved in the plant immune response through modulating the SA-ET/JA signaling pathways. In general, the SA-mediated defense response plays a central role in local and systemic-acquired resistance (SAR) against biotrophic pathogens, such as Pseudomonas syringae, which colonize between the host cells by producing nutrient-absorbing structures while keeping the host alive. The ET/JA-mediated response contributes to the defense against necrotrophic pathogens, such as Botrytis cinerea, which invade and kill hosts to extract their nutrients. Increasing evidence indicates that the SA- and ET/JA-mediated defense response pathways are mutually antagonistic.


2012 ◽  
Vol 2 (1) ◽  
pp. 48-53
Author(s):  
Thanh Toan Le ◽  
Van Dien Luong ◽  
Thuy Nhien Thi Ngo ◽  
Van Kim Pham

Most rice protection methods have currently used toxic chemicals to control pathogens and pests, which leads to environment pollution. Systemic acquired resistance (SAR) taking advantage of natural defence reaction of plants could be proposed as an alternative, ecologically friendly ap-proach for plant protection. Its application into rice production could minimize the chemicals quantity used, and could contribute to the decrease of environmental pollution and the development of sustainable agriculture. The research was conducted to select the best effective chemical and method to improve the health of rice plants infected by grassy stunt disease in net-house of Cantho University. SAR chemicals were used at very low concentrations (in mM). Results showed that the height of rice plants treated with SAR chemicals was higher than that of plants untreated. Besides, the number of diseased plant was reduced and the ratio of firm grain and yield increased when plants were applied by SAR. Among them, oxalic acid was the best systemic acquired resistance. With oxalic acid, seed soaking was better than seed coating in systemic acquired resistance against rice grassy stunt disease. Hầu hết các phương pháp sản xuất lúa hiện nay đều sử dụng các hóa chất độc hại trong việc phòng trừ bệnh và côn trùng gây hại, nên dẫn đến ô nhiễm môi trường. Kích thích tính kháng lưu dẫn giúp kích hoạt cơ chế tự nhiênkháng bệnh của cây có thể là giải pháp bảo vệ thực vật thay thế an toàn với môi trường. Việc ứng dụng tiến bộ này vào trong sản xuất lúa có thể làm giảm lượng hóa chất sử dụng, đóng góp vào việc giảm thiểu ô nhiễmmôi trường và sự phát triển của một nền nông nghiệp bền vững. Nghiên cứu đã được thực hiện tại nhà lưới trường Đại học Cần Thơ để tuyển chọn hóa chất và phương pháp sử dụng hóa chất để tăng cường sức khỏe giúp cây lúa vượt qua bệnh vàng lùn. Hóa chất kích kháng được sử dụng ở một nồng độ rất thấp (đơn vị là mM). Kết quả cho thấy chiều cao cây lúa khi xử lý chất kích kháng tốt hơn so đối chứng không xử lý. Bên cạnh đó, số cây lúa nhiễm bệnh giảm, tỉ lệ hạt chắc và năng suất tăng khi cây lúa được xử lý với chất kích kháng. Trong số các chất kích kháng đã sử dụng, acid oxalic cho hiệu quả vượt trội. Với chất acid oxalic, phương pháp ngâm hạt cho hiệuquả kích kháng tốt hơn phương pháp áo hạt.


2020 ◽  
Vol 33 (1) ◽  
pp. 98-107 ◽  
Author(s):  
Unnati A. Shah ◽  
Ioly Kotta-Loizou ◽  
Bruce D. L. Fitt ◽  
Robert H. A. Coutts

Phoma stem canker (blackleg) is one of the most important diseases of winter oilseed rape (Brassica napus) worldwide and is caused by a complex that comprises at least two species: Leptosphaeria maculans and L. biglobosa. Screening a panel of field Leptosphaeria isolates from B. napus for the presence of mycoviruses revealed the presence of a novel double-stranded RNA quadrivirus in L. biglobosa and no viruses in L. maculans. Following elimination of the mycovirus, virus-infected and virus-free isogenic lines of L. biglobosa were created. A direct comparison of the growth and virulence of these isogenic lines illustrated that virus infection caused hypervirulence and resulted in induced systemic resistance toward L. maculans in B. napus following lower leaf preinoculation with the virus-infected isolate. Analysis of the plant transcriptome suggests that the presence of the virus leads to subtle alterations in metabolism and plant defenses. For instance, transcripts involved in carbohydrate and amino acid metabolism are enriched in plants treated with the virus-infected isolate, while pathogenesis-related proteins, chitinases and WRKY transcription factors are differentially expressed. These results illustrate the potential for deliberate inoculation of plants with hypervirulent L. biglobosa to decrease the severity of Phoma stem canker later in the growing season. [Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2163 ◽  
Author(s):  
Weronika Czarnocka ◽  
Yosef Fichman ◽  
Maciej Bernacki ◽  
Elżbieta Różańska ◽  
Izabela Sańko-Sawczenko ◽  
...  

Because of their sessile nature, plants evolved integrated defense and acclimation mechanisms to simultaneously cope with adverse biotic and abiotic conditions. Among these are systemic acquired resistance (SAR) and systemic acquired acclimation (SAA). Growing evidence suggests that SAR and SAA activate similar cellular mechanisms and employ common signaling pathways for the induction of acclimatory and defense responses. It is therefore possible to consider these processes together, rather than separately, as a common systemic acquired acclimation and resistance (SAAR) mechanism. Arabidopsis thaliana flavin-dependent monooxygenase 1 (FMO1) was previously described as a regulator of plant resistance in response to pathogens as an important component of SAR. In the current study, we investigated its role in SAA, induced by a partial exposure of Arabidopsis rosette to local excess light stress. We demonstrate here that FMO1 expression is induced in leaves directly exposed to excess light stress as well as in systemic leaves remaining in low light. We also show that FMO1 is required for the systemic induction of ASCORBATE PEROXIDASE 2 (APX2) and ZINC-FINGER OF ARABIDOPSIS 10 (ZAT10) expression and spread of the reactive oxygen species (ROS) systemic signal in response to a local application of excess light treatment. Additionally, our results demonstrate that FMO1 is involved in the regulation of excess light-triggered systemic cell death, which is under control of LESION SIMULATING DISEASE 1 (LSD1). Our study indicates therefore that FMO1 plays an important role in triggering SAA response, supporting the hypothesis that SAA and SAR are tightly connected and use the same signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document