scholarly journals The Type III Secretion Chaperone HpaB Controls the Translocation of Effector and Noneffector Proteins From Xanthomonas campestris pv. vesicatoria

2018 ◽  
Vol 31 (1) ◽  
pp. 61-74 ◽  
Author(s):  
Felix Scheibner ◽  
Nadine Hartmann ◽  
Jens Hausner ◽  
Christian Lorenz ◽  
Anne-Katrin Hoffmeister ◽  
...  

Pathogenicity of the gram-negative bacterium Xanthomonas campestris pv. vesicatoria depends on a type III secretion (T3S) system, which translocates effector proteins into plant cells. Effector proteins contain N-terminal T3S and translocation signals and interact with the T3S chaperone HpaB, which presumably escorts effectors to the secretion apparatus. The molecular mechanisms underlying the recognition of effectors by the T3S system are not yet understood. In the present study, we analyzed T3S and translocation signals in the type III effectors XopE2 and XopJ from X. campestris pv. vesicatoria. Both effectors contain minimal translocation signals, which are only recognized in the absence of HpaB. Additional N-terminal signals promote translocation of XopE2 and XopJ in the wild-type strain. The results of translocation and interaction studies revealed that the interaction of XopE2 and XopJ with HpaB and a predicted cytoplasmic substrate docking site of the T3S system is not sufficient for translocation. In agreement with this finding, we show that the presence of an artificial HpaB-binding site does not promote translocation of the noneffector XopA in the wild-type strain. Our data, therefore, suggest that the T3S chaperone HpaB not only acts as an escort protein but also controls the recognition of translocation signals.

2002 ◽  
Vol 184 (21) ◽  
pp. 5966-5970 ◽  
Author(s):  
Sarah E. Burr ◽  
Katja Stuber ◽  
Thomas Wahli ◽  
Joachim Frey

ABSTRACT Aeromonas salmonicida subsp. salmonicida, the etiological agent of furunculosis, is an important fish pathogen. We have screened this bacterium with a broad-host-range probe directed against yscV, the gene that encodes the archetype of a highly conserved family of inner membrane proteins found in every known type III secretion system. This has led to the identification of seven open reading frames that encode homologues to proteins functioning within the type III secretion systems of Yersinia species. Six of these proteins are encoded by genes comprising a virA operon. The A. salmonicida subsp. salmonicida yscV homologue, ascV, was inactivated by marker replacement mutagenesis and used to generate an isogenic ascV mutant. Comparison of the extracellular protein profiles from the ascV mutant and the wild-type strain indicates that A. salmonicida subsp. salmonicida secretes proteins via a type III secretion system. The recently identified ADP-ribosylating toxin AexT was identified as one such protein. Finally, we have compared the toxicities of the wild-type A. salmonicida subsp. salmonicida strain and the ascV mutant against RTG-2 rainbow trout gonad cells. While infection with the wild-type strain results in significant morphological changes, including cell rounding, infection with the ascV mutant has no toxic effect, indicating that the type III secretion system we have identified plays an important role in the virulence of this pathogen.


Microbiology ◽  
2010 ◽  
Vol 156 (9) ◽  
pp. 2770-2781 ◽  
Author(s):  
Amanda L. S. Wisner ◽  
Taseen S. Desin ◽  
Birgit Koch ◽  
Po-King S. Lam ◽  
Emil M. Berberov ◽  
...  

Salmonella enterica subspecies enterica serovar Enteritidis (S. Enteritidis) has been identified as a significant cause of salmonellosis in humans. Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) each encode a specialized type III secretion system (T3SS) that enables Salmonella to manipulate host cells at various stages of the invasion/infection process. For the purposes of our studies we used a chicken isolate of S. Enteritidis (Sal18). In one study, we orally co-challenged 35-day-old specific pathogen-free (SPF) chickens with two bacterial strains per group. The control group received two versions of the wild-type strain Sal18: Sal18 attTn7 : : tet and Sal18 attTn7 : : cat, while the other two groups received the wild-type strain (Sal18 attTn7 : : tet) and one of two mutant strains. From this study, we concluded that S. Enteritidis strains deficient in the SPI-1 and SPI-2 systems were outcompeted by the wild-type strain. In a second study, groups of SPF chickens were challenged at 1 week of age with four different strains: the wild-type strain, and three other strains lacking either one or both of the SPI-1 and SPI-2 regions. On days 1 and 2 post-challenge, we observed a reduced systemic spread of the SPI-2 mutants, but by day 3, the systemic distribution levels of the mutants matched that of the wild-type strain. Based on these two studies, we conclude that the S. Enteritidis SPI-2 T3SS facilitates invasion and systemic spread in chickens, although alternative mechanisms for these processes appear to exist.


2001 ◽  
Vol 183 (2) ◽  
pp. 528-535 ◽  
Author(s):  
Hsien-Ming Lee ◽  
Shiaw-Wei Tyan ◽  
Wei-Ming Leu ◽  
Ling-Yun Chen ◽  
David Chanhen Chen ◽  
...  

ABSTRACT The xps gene cluster is required for the second step of type II protein secretion in Xanthomonas campestrispv. campestris. Deletion of the entire gene cluster caused accumulation of secreted proteins in the periplasm. By analyzing protein abundance in the chromosomal mutant strains, we observed mutual dependence for normal steady-state levels between the XpsL and the XpsM proteins. The XpsL protein was undetectable in total lysate prepared from thexpsM mutant strain, and vice versa. Introduction of the wild-type xpsM gene carried on a plasmid into thexpsM mutant strain was sufficient for reappearance of the XpsL protein, and vice versa. Moreover, both XpsL and XpsM proteins were undetectable in the xpsN mutant strain. They were recovered either by reintroducing the wild-type xpsNgene or by introducing extra copies of wild-type xpsL orxpsM individually. Overproduction of wild-type XpsL and -M proteins simultaneously, but not separately, in the wild-type strain of X. campestris pv. campestris caused inhibition of secretion. Complementation of an xpsL orxpsM mutant strain with a plasmid-borne wild-type gene was inhibited by coexpression of XpsL and XpsM. The presence of the xpsN gene on the plasmid along with thexpsL and the xpsM genes caused more severe inhibition in both cases. Furthermore, complementation of thexpsN mutant strain was also inhibited. In both the wild-type strain and a strain with the xps gene cluster deleted (XC17433), carrying pCPP-LMN, which encodes all three proteins, each protein coprecipitated with the other two upon immunoprecipitation. Expression of pairwise combinations of the three proteins in XC17433 revealed that the XpsL-XpsM and XpsM-XpsN pairs still coprecipitated, whereas the XpsL-XpsN pair no longer coprecipitated.


2019 ◽  
Vol 85 (8) ◽  
Author(s):  
Ying Li Liu ◽  
Tian Tian He ◽  
Lu Yi Liu ◽  
Jia Yi ◽  
Pin Nie ◽  
...  

ABSTRACT The type III secretion system (T3SS) is one of the most important virulence factors of the fish pathogen Edwardsiella piscicida. It contains three translocon proteins, EseB, EseC, and EseD, required for translocation of effector proteins into host cells. We have previously shown that EseB forms filamentous appendages on the surface of E. piscicida, and these filamentous structures mediate bacterial cell-cell interactions promoting autoaggregation and biofilm formation. In the present study, we show that EseC, but not EseD, inhibits the autoaggregation and biofilm formation of E. piscicida. At 18 h postsubculture, a ΔeseC strain developed strong autoaggregation and mature biofilm formation, accompanied by enhanced formation of EseB filamentous appendages. This is in contrast to the weak autoaggregation and immature biofilm formation seen in the E. piscicida wild-type strain. EseE, a protein that directly binds to EseC and also positively regulates the transcription of the escC-eseE operon, was liberated and showed increased levels in the absence of EseC. This led to augmented transcription of the escC-eseE operon, thereby increasing the steady-state protein levels of intracellular EseB, EseD, and EseE, as well as biofilm formation. Notably, the levels of intracellular EseB and EseD produced by the ΔeseE and ΔeseC ΔeseE strains were similar but remarkably lower than those produced by the wild-type strain at 18 h postsubculture. Taken together, we have shown that the translocon protein EseC inhibits biofilm formation through sequestering EseE, a positive regulator of the escC-eseE operon. IMPORTANCE Edwardsiella piscicida, previously known as Edwardsiella tarda, is a Gram-negative intracellular pathogen that mainly infects fish. The type III secretion system (T3SS) plays a pivotal role in its pathogenesis. The T3SS translocon protein EseB is required for the assembly of filamentous appendages on the surface of E. piscicida. The interactions between the appendages facilitate autoaggregation and biofilm formation. In this study, we explored the role of the other two translocon proteins, EseC and EseD, in biofilm formation. We have demonstrated that EseC, but not EseD, inhibits the autoaggregation and biofilm formation of E. piscicida, providing new insights into the regulatory mechanism involved in E. piscicida biofilm formation.


2011 ◽  
Vol 79 (8) ◽  
pp. 2998-3011 ◽  
Author(s):  
Steve Schulz ◽  
Daniela Büttner

ABSTRACTPathogenicity ofXanthomonas campestrispv.vesicatoriadepends on a type III secretion (T3S) system which translocates effector proteins into eukaryotic cells and is associated with an extracellular pilus and a translocon in the host plasma membrane. T3S substrate specificity is controlled by the cytoplasmic switch protein HpaC, which interacts with the C-terminal domain of the inner membrane protein HrcU (HrcUC). HpaC promotes the secretion of translocon and effector proteins but prevents the efficient secretion of the early T3S substrate HrpB2, which is required for pilus assembly. In this study, complementation assays with serial 10-amino-acid HpaC deletion derivatives revealed that the T3S substrate specificity switch depends on N- and C-terminal regions of HpaC, whereas amino acids 42 to 101 appear to be dispensable for the contribution of HpaC to the secretion of late substrates. However, deletions in the central region of HpaC affect the secretion of HrpB2, suggesting that the mechanisms underlying HpaC-dependent control of early and late substrates can be uncoupled. The results of interaction and expression studies with HpaC deletion derivatives showed that amino acids 112 to 212 of HpaC provide the binding site for HrcUCand severely reduce T3S when expressed ectopically in the wild-type strain. We identified a conserved phenylalanine residue at position 175 of HpaC that is required for both protein function and the binding of HpaC to HrcUC. Taking these findings together, we concluded that the interaction between HpaC and HrcUCis essential but not sufficient for T3S substrate specificity switching.


2007 ◽  
Vol 20 (3) ◽  
pp. 223-234 ◽  
Author(s):  
Yanmei Xiao ◽  
Lefu Lan ◽  
Chuntao Yin ◽  
Xin Deng ◽  
Douglas Baker ◽  
...  

The Pseudomonas syringae type III secretion system (T3SS) is induced during interaction with the plant or culture in minimal medium (MM). How the bacterium senses these environments to activate the T3SS is poorly understood. Here, we report the identification of a novel two-component system (TCS), RhpRS, that regulates the induction of P. syringae T3SS genes. The rhpR and rhpS genes are organized in an operon with rhpR encoding a putative TCS response regulator and rhpS encoding a putative biphasic sensor kinase. Transposon insertion in rhpS severely reduced the induction of P. syringae T3SS genes in the plant as well as in MM and significantly compromised the pathogenicity on host plants and hypersensitive response-inducing activity on nonhost plants. However, deletion of the rhpRS locus allowed the induction of T3SS genes to the same level as in the wild-type strain and the recovery of pathogenicity upon infiltration into plants. Overexpression of RhpR in the ΔrhpRS deletion strain abolished the induction of T3SS genes. However, overexpression of RhpR in the wild-type strain or overexpression of RhpR(D70A), a mutant of the predicted phosphorylation site of RhpR, in the ΔrhpRS deletion strain only slightly reduced the induction of T3SS genes. Based on these results, we propose that the phosphorylated RhpR represses the induction of T3SS genes and that RhpS reverses phosphorylation of RhpR under the T3SS-inducing conditions. Epistasis analysis indicated that rhpS and rhpR act upstream of hrpR to regulate T3SS genes.


2004 ◽  
Vol 186 (15) ◽  
pp. 5078-5086 ◽  
Author(s):  
Shipan Dai ◽  
Daoguo Zhou

ABSTRACT Salmonella strains utilize a type III secretion system for their successful survival and replications inside host cells. SseF is one of the several effector proteins that are required for conferring this survival ability by altering the trafficking of the Salmonella-containing vacuoles. These effector proteins often require appropriate chaperones to maintain their stabilities inside the bacteria. These chaperones are also known to assist the subsequent secretion and translocation of their substrates. We report here that SscB acts as the chaperone for SseF, an effector for the Salmonella pathogenicity island 2 (SPI-2). We found that the sscB gene is required for the formation of Salmonella sp.-induced continuous filaments in epithelial cells. Efficient Salmonella replication in macrophages requires SscB function. Intracellular and secretion levels of SseF are greatly reduced in an sscB mutant strain compared to the wild-type strain. A protein stability assay demonstrated that the half-life of SseF is significantly shortened in the absence of SscB. Transcriptional analysis of the sseF gene showed that the effect of SscB on the SseF level is not at the transcriptional level. A coprecipitation experiment indicated that SscB interacts with SseF. In summary, our results indicate that SscB is a chaperone for SPI-2 effector SseF to facilitate its secretion and function inside the host cells.


2007 ◽  
Vol 190 (1) ◽  
pp. 343-355 ◽  
Author(s):  
Rong-Qi Xu ◽  
Servane Blanvillain ◽  
Jia-Xun Feng ◽  
Bo-Le Jiang ◽  
Xian-Zhen Li ◽  
...  

ABSTRACT Xanthomonas campestris pathovar campestris causes black rot, a vascular disease on cruciferous plants, including Arabidopsis thaliana. The gene XC1553 from X. campestris pv. campestris strain 8004 encodes a protein containing leucine-rich repeats (LRRs) and appears to be restricted to strains of X. campestris pv. campestris. LRRs are found in a number of type III-secreted effectors in plant and animal pathogens. These prompted us to investigate the role of the XC1553 gene in the interaction between X. campestris pv. campestris and A. thaliana. Translocation assays using the hypersensitive-reaction-inducing domain of X. campestris pv. campestris AvrBs1 as a reporter revealed that XC1553 is a type III effector. Infiltration of Arabidopsis leaf mesophyll with bacterial suspensions showed no differences between the wild-type strain and an XC1553 gene mutant; both strains induced disease symptoms on Kashmir and Col-0 ecotypes. However, a clear difference was observed when bacteria were introduced into the vascular system by piercing the central vein of leaves. In this case, the wild-type strain 8004 caused disease on the Kashmir ecotype, but not on ecotype Col-0; the XC1553 gene mutant became virulent on the Col-0 ecotype and still induced disease on the Kashmir ecotype. Altogether, these data show that the XC1553 gene, which was renamed avrACXcc8004 , functions as an avirulence gene whose product seems to be recognized in vascular tissues.


2012 ◽  
Vol 80 (4) ◽  
pp. 1333-1342 ◽  
Author(s):  
V. K. Sharma ◽  
R. E. Sacco ◽  
R. A. Kunkle ◽  
S. M. D. Bearson ◽  
D. E. Palmquist

ABSTRACTThe locus of enterocyte effacement (LEE) ofEscherichia coliO157:H7 (O157) encodes a type III secretion system (T3SS) for secreting LEE-encoded and non-LEE-encoded virulence proteins that promote the adherence of O157 to intestinal epithelial cells and the persistence of this food-borne human pathogen in bovine intestines. In this study, we comparedhha sepBandhhamutants of O157 for LEE transcription, T3SS activity, adherence to HEp-2 cells, persistence in bovine intestines, and the ability to induce changes in the expression of proinflammatory cytokines. LEE transcription was upregulated in thehha sepBandhhamutant strains compared to that in the wild-type strain, but the secretion of virulence proteins in thehha sepBmutant was severely compromised. This reduced secretion resulted in reduced adherence of thehha sepBmutant to Hep-2 cells, correlating with a significantly shorter duration and lower magnitude of fecal shedding in feces of weaned (n= 4 per group) calves inoculated with this mutant strain. The levels of LEE transcription, T3SS activity, and adherence to HEp-2 cells were much lower in the wild-type strain than in thehhamutant, but no significant differences were observed in the duration or the magnitude of fecal shedding in calves inoculated with these strains. Examination of the rectoanal junction (RAJ) tissues from three groups of calves showed no adherent O157 bacteria and similar proinflammatory cytokine gene expression, irrespective of the inoculated strain, with the exception that interleukin-1β was upregulated in calves inoculated with thehha sepBmutant. These results indicate that the T3SS is essential for intestinal colonization and prolonged shedding, but increased secretion of virulence proteins did not enhance the duration and magnitude of fecal shedding of O157 in cattle or have any significant impact on the cytokine gene expression in RAJ tissue compared with that in small intestinal tissue from the same calves.


2010 ◽  
Vol 78 (11) ◽  
pp. 4551-4559 ◽  
Author(s):  
Pablo Piñeyro ◽  
Xiaohui Zhou ◽  
Lisa H. Orfe ◽  
Patrick J. Friel ◽  
Kevin Lahmers ◽  
...  

ABSTRACT Vibrio parahaemolyticus is an emerging food- and waterborne pathogen that encodes two type III secretion systems (T3SSs). Previous studies have linked type III secretion system 1 (T3SS1) to cytotoxicity and T3SS2 to intestinal fluid accumulation, but animal challenge models needed to study these phenomena are limited. In this study we evaluated the roles of the T3SSs during infection using two novel animal models: a model in which piglets were inoculated orogastrically and a model in which mice were inoculated in their lungs (intrapulmonarily). The bacterial strains employed in this study had equivalent growth rates and beta-hemolytic activity based on in vitro assays. Inoculation of 48-h-old conventional piglets with 1011 CFU of the wild-type strain (NY-4) or T3SS1 deletion mutant strains resulted in acute, self-limiting diarrhea, whereas inoculation with a T3SS2 deletion mutant strain failed to produce any clinical symptoms. Intrapulmonary inoculation of C57BL/6 mice with the wild-type strain and T3SS2 deletion mutant strains (5 × 105 CFU) induced mortality or a moribund state within 12 h (80 to 100% mortality), whereas inoculation with a T3SS1 deletion mutant or a T3SS1 T3SS2 double deletion mutant produced no mortality. Bacteria were recovered from multiple organs regardless of the strain used in the mouse model, indicating that the mice were capable of clearing the lung infection in the absence of a functional T3SS1. Because all strains had a similar beta-hemolysin phenotype, we surmise that thermostable direct hemolysin (TDH) plays a limited role in these models. The two models introduced herein produce robust results and provide a means to determine how different T3SS1 and T3SS2 effector proteins contribute to pathogenesis of V. parahaemolyticus infection.


Sign in / Sign up

Export Citation Format

Share Document