scholarly journals Transcriptome Profiling of the Rice Blast Fungus Magnaporthe oryzae and Its Host Oryza sativa During Infection

2020 ◽  
Vol 33 (2) ◽  
pp. 141-144 ◽  
Author(s):  
Jongbum Jeon ◽  
Gir-Won Lee ◽  
Ki-Tae Kim ◽  
Sook-Young Park ◽  
Seongbeom Kim ◽  
...  

The rice blast (fungal pathogen: Magnaporthe oryzae and host: Oryza sativa) is one of the most important model pathosystems for understanding plant–microbe interactions. Although both genome sequences were published as the first cases of pathogen and host, only a few in planta transcriptome data during infection are available. Due to technical difficulties, previously reported fungal transcriptome data are not highly qualified to comprehensively profile the expression of fungal genes during infection. Here, we report the high-quality transcriptomes of M. oryzae and rice during infection using a sheath infection-based RNA sequencing approach. This comprehensive expression profiling of the fungal pathogen and its host will provide a better platform for understanding the plant–microbe interactions at the genomic level and serve as a valuable resource for the research community.

2017 ◽  
Author(s):  
Aleksandra Białas ◽  
Erin K. Zess ◽  
Juan Carlos De la Concepcion ◽  
Marina Franceschetti ◽  
Helen G. Pennington ◽  
...  

A diversity of plant-associated organisms secrete effectors—proteins and metabolites that modulate plant physiology to favor host infection and colonization. However, effectors can also activate plant immune receptors, notably nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins, enabling plants to fight off invading organisms. This interplay between effectors, their host targets, and the matching immune receptors is shaped by intricate molecular mechanisms and exceptionally dynamic coevolution. In this article, we focus on three effectors, AVR-Pik, AVR-Pia, and AVR-Pii, from the rice blast fungus Magnaporthe oryzae (syn. Pyricularia oryzae), and their corresponding rice NLR immune receptors, Pik, Pia, and Pii, to highlight general concepts of plant-microbe interactions. We draw 12 lessons in effector and NLR biology that have emerged from studying these three little effectors and are broadly applicable to other plant-microbe systems.


2010 ◽  
Vol 10 (1) ◽  
pp. 206 ◽  
Author(s):  
Emilie Vergne ◽  
Xavier Grand ◽  
Elsa Ballini ◽  
Véronique Chalvon ◽  
P Saindrenan ◽  
...  

2019 ◽  
Vol 39 (8) ◽  
Author(s):  
Mao Huang ◽  
Elias G. Balimponya ◽  
Emmanuel M. Mgonja ◽  
Leah K. McHale ◽  
Ashura Luzi-Kihupi ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e51609 ◽  
Author(s):  
Paolo Bagnaresi ◽  
Chiara Biselli ◽  
Luigi Orrù ◽  
Simona Urso ◽  
Laura Crispino ◽  
...  

Plant Disease ◽  
2012 ◽  
Vol 96 (8) ◽  
pp. 1228-1228 ◽  
Author(s):  
M. P. You ◽  
V. Lanoiselet ◽  
C. P. Wang ◽  
R. G. Shivas ◽  
Y. P. Li ◽  
...  

Commercial rice crops (Oryza sativa L.) have been recently reintroduced to the Ord River Irrigation Area in northern Western Australia. In early August 2011, unusual leaf spot symptoms were observed by a local rice grower on rice cultivar Quest. A leaf spot symptom initially appeared as grey-green and/or water soaked with a darker green border and then expanded rapidly to several centimeters in length and became light tan in color with a distinct necrotic border. Isolations from typical leaf lesions were made onto water agar, subcultured onto potato dextrose agar, and maintained at 20°C. A representative culture was lodged in the Western Australian Culture Collection Herbarium, Department of Agriculture and Food Western Australia (WAC 13466) and as a herbarium specimen in the Plant Pathology Herbarium, Plant Biosecurity Science (BRIP 54721). Amplification of the internal transcribed spacer (ITS)1 and (ITS)2 regions flanking the 5.8S rRNA gene were carried out with universal primers ITS1 and ITS4 (4). The PCR products were sequenced and BLAST analyses used to compare sequences with those in GenBank. The sequence had 99% nucleotide identity with the corresponding sequence in GenBank for Magnaporthe oryzae B.C. Couch, the causal agent of rice blast, the most important fungal disease of rice worldwide (1). Additional sequencing with the primers Bt1a/Bt1b for the β-tubulin gene, primers ACT-512F/ACT-783R for the actin gene, and primers CAL-228F/CAL-737R for the calmodulin gene showed 100% identity in each case with M. oryzae sequences in GenBank, confirming molecular similarity with other reports, e.g., (1). The relevant sequence information for a representative isolate has been lodged in GenBank (GenBank Accession Nos. JQ911754 for (ITS) 1 and 2; JX014265 for β-tubulin; JX035809 for actin; and JX035808 for calmodulin). Isolates also showed morphological similarity with M. oryzae as described in other reports, e.g., (3). Spores of M. oryzae were produced on rice agar under “black light” at 21°C for 4 weeks. Under 30/28°C (day/night), 14/12 h (light/dark), rice cv. Quest was grown for 7 weeks, and inoculated by spraying a suspension 5 × 105 spores/ml onto foliage until runoff occurred. Inoculated plants were placed under a dark plastic covering for 72 h to maximize humidity levels around leaves, and subsequently maintained under >90% RH conditions. Typical symptoms of rice blast appeared within 14 days of inoculation and were as described above. Infection studies were successfully repeated and M. oryzae was readily reisolated from leaf lesions. No disease symptoms were observed nor was M. oryzae isolated from water-inoculated control rice plants. There have been previous records of rice blast in the Northern Territory (2) and Queensland, Australia (Australian Plant Pest Database), but this is the first report of M. oryzae in Western Australia, where it could potentially be destructive if conditions prove conducive. References: (1) B. C. Couch and L. M. Kohn. Mycologia 94:683, 2002; (2) J. B. Heaton. The Aust. J. Sci. 27:81, 1964; (3) C. V. Subramanian. IMI Descriptions of Fungi and Bacteria No 169, Pyricularia oryzae, 1968; (4) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, New York, 1990.


2017 ◽  
Vol 7 (1) ◽  
pp. 31-42 ◽  
Author(s):  
Mui Sie Jee ◽  
Leonard Whye Kit Lim ◽  
Martina Azelin Dirum ◽  
Sara Ilia Che Hashim ◽  
Muhammad Shafiq Masri ◽  
...  

Magnaporthe oryzae is a fungal pathogen contributing to rice blast diseases globally via their Avr (avirulence) gene. Although the occurrence of M. oryzae has been reported in Sarawak since several decades ago, however, none has focused specifically on Avr genes, which confer resistance against pathogen associated molecular pattern-triggered immunity (PTI) in host. The objective of this study is to isolate Avr genes from M. oryzae 7’ (a Sarawak isolate) that may contribute to susceptibility of rice towards diseases. In this study, AvrPiz-t, AVR-Pik, Avr-Pi54, and AVR-Pita1 genes were isolated via PCR and cloning approaches. The genes were then compared with set of similar genes from related isolates derived from NCBI. Results revealed that all eight Avr genes (including four other global isolates) shared similar N-myristoylation site and a novel motif. 3D modeling revealed similar β-sandwich structure in AvrPiz-t and AVR-Pik despite sequence dissimilarities. In conclusion, it is confirmed of the presence of these genes in the Sarawak (M. oryzae) isolate. This study implies that Sarawak isolate may confer similar avirulence properties as their counterparts worldwide. Further R/Avr gene-for-gene relationship studies may aid in strategic control of rice blast diseases in future.


2021 ◽  
Vol 7 (10) ◽  
pp. 858
Author(s):  
Jiao-yu Wang ◽  
Shi-zhen Wang ◽  
Zhen Zhang ◽  
Zhong-na Hao ◽  
Xiao-xiao Shi ◽  
...  

Magnaporthe oryzae, a fungal pathogen that causes rice blast, which is the most destructive disease of rice worldwide, has the potential to perform both asexual and sexual reproduction. MAT loci, consisting of MAT genes, were deemed to determine the mating types of M. oryzae strains. However, investigation was rarely performed on the development and molecular mechanisms of the sexual reproduction of the fungus. In the present work, we analyzed the roles of two MAT loci and five individual MAT genes in the sex determination, sexual development and pathogenicity of M. oryzae. Both of the MAT1-1 and MAT1-2 loci are required for sex determination and the development of sexual structures. MAT1-1-1, MAT1-1-3 and MAT1-2-1 genes are crucial for the formation of perithecium. MAT1-1-2 impacts the generation of asci and ascospores, while MAT1-2-2 is dispensable for sexual development. A GFP fusion experiment indicated that the protein of MAT1-1-3 is distributed in the nucleus. However, all of the MAT loci or MAT genes are dispensable for vegetative growth, asexual reproduction, pathogenicity and pathogenicity-related developments of the fungus, suggesting that sexual reproduction is regulated relatively independently in the development of the fungus. The data and methods of this work may be helpful to further understand the life cycle and the variation of the fungus.


2014 ◽  
Vol 30 (4) ◽  
pp. 367-374 ◽  
Author(s):  
Md. Abu Sadat ◽  
Junhyun Jeon ◽  
Albely Afifa Mir ◽  
Seongbeom Kim ◽  
Jaeyoung Choi ◽  
...  

2021 ◽  
Vol 22 (10) ◽  
pp. 5163
Author(s):  
Yuejuan Li ◽  
Baichun Hu ◽  
Zhibin Wang ◽  
Jianhua He ◽  
Yaoliang Zhang ◽  
...  

Magnaporthe oryzae (M. oryzae) is a typical cause of rice blast in agricultural production. Isobavachalcone (IBC), an active ingredient of Psoralea corylifolia L. extract, is an effective fungicide against rice blast. To determine the mechanism of IBC against M. oryzae, the effect of IBC on the metabolic pathway of M. oryzae was explored by transcriptome profiling. In M. oryzae, the expression of pyruvate dehydrogenase E1 (PDHE1), part of the tricarboxylic acid (TCA cycle), was significantly decreased in response to treatment with IBC, which was verified by qPCR and testing of enzyme activity. To further elucidate the interactions between IBC and PDHE1, the 3D structure model of the PDHE1 from M. oryzae was established based on homology modeling. The model was utilized to analyze the molecular interactions through molecular docking and molecular dynamics simulation, revealing that IBC has π-π stacking interactions with residue TYR139 and undergoes hydrogen bonding with residue ASP217 of PDHE1. Additionally, the nonpolar residues PHE111, MET174, ILE 187, VAL188, and MET250 form strong hydrophobic interactions with IBC. The above results reveal that PDHE1 is a potential target for antifungal agents, which will be of great significance for guiding the design of new fungicides. This research clarified the mechanism of IBC against M. oryzae at the molecular level, which will underpin further studies of the inhibitory mechanism of flavonoids and the discovery of new targets. It also provides theoretical guidance for the field application of IBC.


Sign in / Sign up

Export Citation Format

Share Document