scholarly journals ‘Ca. Liberibacter asiaticus’ Carries an Excision Plasmid Prophage and a Chromosomally Integrated Prophage That Becomes Lytic in Plant Infections

2011 ◽  
Vol 24 (4) ◽  
pp. 458-468 ◽  
Author(s):  
Shujian Zhang ◽  
Zomary Flores-Cruz ◽  
Lijuan Zhou ◽  
Byung-Ho Kang ◽  
Laura A. Fleites ◽  
...  

Huanglongbing (HLB), also known as citrus greening, is a lethal disease of citrus caused by several species of ‘Candidatus Liberibacter’, a psyllid-transmitted, phloem-limited, alpha proteobacteria. ‘Ca. Liberibacter asiaticus’ is widespread in Florida citrus. The recently published ‘Ca. L. asiaticus’ psy62 genome, derived from a psyllid, revealed a prophage-like region of DNA in the genome, but phage have not been associated with ‘Ca. L. asiaticus’ to date. In the present study, shotgun sequencing and a fosmid DNA library of curated ‘Ca. L. asiaticus’ UF506, originally derived from citrus symptomatic for HLB, revealed two largely homologous, circular phage genomes, SC1 and SC2. SC2 encoded putative adhesin and peroxidase genes that had not previously been identified in ‘Ca. L. asiaticus’ and which may be involved in lysogenic conversion. SC2 also appeared to lack lytic cycle genes and replicated as a prophage excision plasmid, in addition to being found integrated in tandem with SC1 in the UF506 chromosome. By contrast, SC1 carried suspected lytic cycle genes and was found in nonintegrated, lytic cycle forms only in planta. Phage particles associated with ‘Ca. L. asiaticus’ were found in the phloem of infected periwinkles by transmission electron microscopy. In psyllids, both SC1 and SC2 were found only as prophage.

2015 ◽  
Vol 28 (12) ◽  
pp. 1330-1337 ◽  
Author(s):  
Mukesh Jain ◽  
Laura A. Fleites ◽  
Dean W. Gabriel

‘Candidatus Liberibacter asiaticus’ is transmitted by psyllids and causes huanglongbing (HLB), a lethal disease of citrus. Most pathogenic ‘Ca. L. asiaticus’ strains carry two nearly identical prophages similar to SC1 and SC2 in strain UF506. SC2 was observed to replicate as a moderately high-copy excision plasmid encoding a reactive oxygen species–scavenging peroxidase (SC2_gp095), a predicted lysogenic conversion factor. SC2_gp095 was expressed at significantly higher levels in periwinkle than in citrus and was suppressed in psyllids. SC2_gp095 was cloned in a shuttle vector and transformed into Escherichia coli and Liberibacter crescens, a culturable proxy for ‘Ca. L. asiaticus’. Transformed L. crescens cells showed 20 to 25% enhanced resistance to H2O2 on agar plates, 47% greater enzymatic activity, and enhanced growth in liquid cultures. A nonclassical secretion potential was predicted for SC2_gp095 and secretion from L. crescens was confirmed by enzymatic and Western blot analyses. Transient expression of SC2_gp095 in planta resulted in strong transcriptional downregulation of RbohB, the key gatekeeper of the H2O2-mediated defense signaling in plants, helping explain the surprisingly long incubation period (years) before HLB symptoms appear in ‘Ca. L. asiaticus’–infected citrus. ‘Ca. L. asiaticus’ peroxidase is likely a secreted, horizontally acquired effector that suppresses host symptom development, a tactic used by most biotrophic plant pathogens.


Plant Disease ◽  
2016 ◽  
Vol 100 (6) ◽  
pp. 1080-1086 ◽  
Author(s):  
Greg McCollum ◽  
Mark Hilf ◽  
Mike Irey ◽  
Weiqi Luo ◽  
Tim Gottwald

Huanglongbing (HLB) disease is the most serious threat to citrus production worldwide and, in the last decade, has devastated the Florida citrus industry. In the United States, HLB is associated with the phloem-limited α-proteobacterium ‘Candidatus Liberibacter asiaticus’ and its insect vector, the Asian citrus psyllid (ACP; Diaphorina citri). Significant effort is being put forth to develop novel citrus germplasm that has a lower propensity to succumb to HLB than do currently available varieties. Effective methods of screening citrus germplasm for susceptibility to HLB are essential. In this study, we exposed small, grafted trees of 16 citrus types to free-ranging ACP vectors and ‘Ca. L. asiaticus’ inoculum in the greenhouse. During 45 weeks of exposure to ACP, the cumulative incidence of ‘Ca. L. asiaticus’ infection was 70%. Trees of Citrus macrophylla and C. medica were most susceptible to ‘Ca. L. asiaticus’, with 100% infection by the end of the test period in three trials, while the complex genetic hybrids ‘US 1-4-59’ and ‘Fallglo’ consistently were least susceptible, with approximately 30% infection. Results obtained in this greenhouse experiment showed good agreement with trends observed in the orchard, supporting the validity of our approach for screening citrus germplasm for susceptibility to HLB.


2021 ◽  
Author(s):  
Marcus Vinicius Merfa e Silva ◽  
Eduarda Regina Fischer ◽  
Mariana de Souza e Silva ◽  
Carolina Sardinha Francisco ◽  
Helvécio Coletta-Filho ◽  
...  

Huanglongbing (HLB) is currently the most devastating disease of citrus worldwide. Both bacteria ‘Candidatus Liberibacter asiaticus’ (CLas) and ‘Ca. Liberibacter americanus’ (CLam) are associated with HLB in Brazil, but with a strong prevalence of CLas over CLam. Conventionally, HLB management focuses on controlling the insect vector population (Diaphorina citri; also known as Asian citrus psyllid – ACP) by spraying insecticides, an approach demonstrated to be mostly ineffective. Thus, development of novel more efficient HLB control strategies is required. The multifunctional bacterial outer membrane protein OmpA is involved in several molecular processes between bacteria and their hosts and has been suggested as a target for bacterial control. Curiously, OmpA is absent in CLam in comparison to CLas, suggesting a possible role on host-interaction. Therefore, in the current study, we have treated ACPs with different OmpA-derived peptides aiming to evaluate the acquisition of CLas by the insect vector. Treatment of psyllids with 5 µM of Pep1, Pep3, Pep5 and Pep6 in artificial diet significantly reduced the acquisition of CLas, while increasing the concentration of Pep5 and Pep6 to 50 µM abolished this process. In addition, in planta treatment with 50 µM of Pep6 also significantly decreased the acquisition of CLas and sweet orange plants stably absorbed and maintained this peptide for as long as three months post the final application. Together, our results demonstrate the promising use of OmpA-derived peptides as a novel biotechnological tool to control CLas.


2019 ◽  
Vol 109 (12) ◽  
pp. 2046-2054 ◽  
Author(s):  
Jinyun Li ◽  
Zhiqian Pang ◽  
Shuo Duan ◽  
Donghwan Lee ◽  
Vladimir G. Kolbasov ◽  
...  

Huanglongbing (HLB) or greening currently is the most devastating citrus disease worldwide. The fastidious phloem-colonizing bacterium ‘Candidatus Liberibacter asiaticus’ (CLas) is the causal agent of citrus HLB in Florida. Bactericides containing the active ingredient oxytetracycline (OTC) have been used in foliar spray to control citrus HLB in Florida since 2016. However, the minimum concentration of OTC required to suppress CLas in planta remains unknown. We developed a new method for evaluating the effects of OTC treatment on CLas titers in infected plants and determined the relationship between OTC residue levels and control levels achieved for CLas using mathematical modeling in greenhouse and field experiments. In both greenhouse and field, OTC spray did not reduce the titers of CLas, and it produced undetectable or mild levels of OTC residue in leaves within 7 days post-application (DPA). In greenhouse, OTC injection at 0.05 g per tree decreased CLas titers to an undetectable level (cycle threshold value ≥ 36.0) from 7 to 30 DPA and produced a residue level of OTC at 0.68 to 0.73 µg/g of fresh tissue over this period. In the field, OTC injection at 0.50 g per tree resulted in the decline of CLas titers by 1.52 log reduction from 14 to 60 DPA, with residue levels of OTC at 0.27 to 0.33 µg/g of fresh tissue. In both trials, a first-order compart model of OTC residue dynamics in leaves of trunk-injected trees was specified for estimating the retention of effective concentrations. Furthermore, nonlinear modeling revealed significant positive correlations between OTC residue levels in leaves and the control levels for CLas achieved. The results suggested that the minimum concentrations of OTC required to suppress CLas populations in planta to below the detection limit are 0.68 and 0.86 µg/g and that the minimum concentrations of OTC required for initial inhibition of CLas growth in planta are ∼0.17 and ∼0.215 µg/g in leaf tissues under greenhouse and field conditions, respectively. This finding highlights that a minimum concentration of OTC should be guaranteed to be delivered to target CLas in infected plants for effective control of citrus HLB.


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 262
Author(s):  
Nabil Killiny ◽  
Pedro Gonzalez-Blanco ◽  
Yulica Santos-Ortega ◽  
Fuad Al-Rimawi ◽  
Amit Levy ◽  
...  

Huánglóngbìng (HLB), citrus greening, is one of the most destructive diseases of citrus plants worldwide. In North America, HLB is caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus and is transmitted by the Asian citrus psyllid, Diaphorina citri. No cure exists at present, and the use of antibiotics for the control of HLB has gained interest due to the significant losses to the citrus industry. Because of unsatisfactory results when using foliar applications of antibiotics, concerns were raised regarding the uptake and translocation of these materials within trees. We, therefore, investigated a method that allows us to study the movement of antibiotic materials in citrus plants. Herein, we utilized a fluorescence-labeled penicillin, BOCILLIN™ FL-Penicillin (FL-penicillin), to study the uptake and translocation of penicillin in citrus plants. FL-penicillin was applied by puncture to the stem of young citrus seedlings and was traced by using fluorescence microscopy. After application, we detected FL-penicillin in the leaves and in the stem xylem and phloem tissues above and below the application site in both intact and partially bark-girdled citrus seedlings, indicating that it is easily taken up and transported through the plant vascular system. In addition, we detected FL-penicillin in the gut of D. citri, which were allowed to feed on the treated plants, suggesting translocation of this molecule into the vascular tissue. We propose that the use of fluorescent-labeled molecules could be an effective tool for understanding the uptake and translocation of antibiotics and other macromolecules in plants and insects.


2020 ◽  
Vol 33 (12) ◽  
pp. 1394-1404
Author(s):  
Kelley J. Clark ◽  
Zhiqian Pang ◽  
Jessica Trinh ◽  
Nian Wang ◽  
Wenbo Ma

Sec-delivered effector 1 (SDE1) from the huanglongbing (HLB)-associated bacterium ‘Candidatus Liberibacter asiaticus’ was previously characterized as an inhibitor of defense-related, papain-like cysteine proteases in vitro and in planta. Here, we investigated the contributions of SDE1 to HLB progression. We found that SDE1 expression in the model plant Arabidopsis thaliana caused severe yellowing in mature leaves, reminiscent of both ‘Ca. L. asiaticus’ infection symptoms and accelerated leaf senescence. Induction of senescence signatures was also observed in the SDE1-expressing A. thaliana lines. These signatures were apparent in older leaves but not in seedlings, suggesting an age-associated effect. Furthermore, independent lines of transgenic Citrus paradisi (L.) Macfadyen (Duncan grapefruit) that express SDE1 exhibited hypersusceptibility to ‘Ca. L. asiaticus’. Similar to A. thaliana, transgenic citrus expressing SDE1 showed altered expression of senescence-associated genes, but only after infection with ‘Ca. L. asiaticus’. These findings suggest that SDE1 is a virulence factor that contributes to HLB progression, likely by inducing premature or accelerated senescence in citrus. This work provides new insight into HLB pathogenesis. [Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


2008 ◽  
Vol 98 (5) ◽  
pp. 592-599 ◽  
Author(s):  
Satyanarayana Tatineni ◽  
Uma Shankar Sagaram ◽  
Siddarame Gowda ◽  
Cecile J. Robertson ◽  
William O. Dawson ◽  
...  

Huanglongbing (HLB) is one of the most devastating diseases of citrus worldwide, and is caused by a phloem-limited fastidious prokaryotic α-proteobacterium that is yet to be cultured. In this study, a combination of traditional polymerase chain reaction (PCR) and real-time PCR targeting the putative DNA polymerase and 16S rDNA sequence of ‘Candidatus Liberibacter asiaticus,’ respectively, were used to examine the distribution and movement of the HLB pathogen in the infected citrus tree. We found that ‘Ca. Liberibacter asiaticus’ was distributed in bark tissue, leaf midrib, roots, and different floral and fruit parts, but not in endosperm and embryo, of infected citrus trees. Quantification analysis of the HLB bacterium indicated that it was distributed unevenly in planta and ranged from 14 to 137,031 cells/μg of total DNA in different tissues. A relatively high concentration of ‘Ca. Liberibacter asiaticus’ was observed in fruit peduncles. Our data from greenhouse-infected plants also indicated that ‘Ca. Liberibacter asiaticus’ was transmitted systemically from infection site to different parts of the plant. Understanding the distribution and movement of the HLB bacterium inside an individual citrus tree is critical for discerning its virulence mechanism and to develop management strategies for HLB.


2019 ◽  
Vol 113 (2) ◽  
pp. 589-595 ◽  
Author(s):  
Freddy Ibanez ◽  
Lukasz L Stelinski

Abstract Huanglongbing, a highly destructive disease of citrus species, is associated with a fastidious, gram-negative, phloem-limited bacteria (Candidatus Liberibacter spp.). In Florida, the causative agent of Huanglongbing (HLB) is C. Liberibacter asiaticus (CLas) and it is transmitted by the insect vector, Asian citrus psyllid (Diaphorina citri Kuwayama). Previous investigations have revealed systemic infection of CLas with an erratic and uneven distribution of pathogen in tree phloem. However, previous investigations did not consider the potential impact of plant vegetative growth on presence/absence of CLas in planta. Our objectives were to determine: 1) the effect of vegetative growth of Citrus sinensis (L.) Osbeck cv Valencia on detection of CLas in mature leaves, and 2) the impact of CLas inoculation frequency on progression of CLas titer in citrus leaves through the first year of infection. Temporal dynamics of CLas detection were associated with vegetative flush growth. Surprisingly, there was no difference in CLas titer detected between plants exposed to infected vectors for a one-time 7 d inoculation access period, as compared with plants exposed to continuously breeding CLas-infected insects over the course of an entire year of plant infection. Our results suggest that the CLas bacterium is transported through phloem during annual movement of carbon compounds needed for vegetative plant growth, including transportation from roots to mature leaves. These results highlight the importance of vegetative growth on temporal dynamics of CLas in citrus, and suggest a critical role of the sink-source interaction on presence/absence of CLas in leaves.


Sign in / Sign up

Export Citation Format

Share Document