scholarly journals Genome Sequences of Verticillium dahliae Defoliating Strain XJ592 and Nondefoliating Strain XJ511

2020 ◽  
Vol 33 (4) ◽  
pp. 565-568 ◽  
Author(s):  
Haiyuan Li ◽  
Jichen Dai ◽  
Jun Qin ◽  
Wenjing Shang ◽  
Jieyin Chen ◽  
...  

Verticillium dahliae is a widely distributed soilborne pathogen that causes vascular wilt in more than 200 plant species. Defoliating and nondefoliating symptoms caused by the disease that result in either the loss or retention of leaves in infected plants, respectively, in hosts such as cotton, olive, and okra, divide the causal agent into defoliating and nondefoliating pathotypes. Our goal in this current work was to generate genome resources for the defoliating strain XJ592 and the nondefoliating strain XJ511 of V. dahliae isolated from cotton in China.

1996 ◽  
Author(s):  
Randall C. Rowe ◽  
Jaacov Katan ◽  
Talma Katan ◽  
Leah Tsror

Verticillium dahliae is an economically important pathogen causing vascular wilt on over 160 plant species. In North America, potato early dying is a significant disease of potato, especially in the midwest and Pacific northwest states. This disease is caused by the fungus Verticillium dahliae and in some cases involves a synergistic interaction with root-lesion nematodes, primarily Pratylenchus penetrans. In Israel, Verticillium wilt occurs in many regions and inflicts serious losses in potato, cotton, and other crops. Objectives of this project were to establish a large collection of isolates of Verticillium dahliae from potato (USA) and several host plants (Israel) and to characterize and compare the isolates with regard to morphology, vegetative compatibility group (VCG), and pathogenic capabilities on several hosts. Isolations were made from 224 commercial lots of certified potato seed tubers from across N. America and 87 potato fields located in the Columbia Basin of Oregon and Washington. A large collection of isolates from central U.S. states already existed. In Israel, 47 field sites were sampled and isolates of Verticillium dahliae were recovered from 13 host plant species and from soil. Potato isolates from N. America were tested for vegetative compatibility and all found to be in VCG 4 with about 2/3 in VCG 4A and the rest in VCG 4B. VCG 4A isolates were significantly more aggressive on potato than VCG 4B isolates and were more likely to interact synergistically with P. penetrans. The Israeli isolates fell into three vegetative compatibility groups. Nearly all (> 90%) VCG2B and VCG 4B isolates were recovered from the northern and southern parts of Israel, respectively, with some overlap in central areas. Several pathotypes were defined in cotton, using cotton and eggplant together as differentials. All VCG 2B isolates from cotton caused severe disease in cotton, while VCG 2A and VCG 4B isolates from several crops were much less aggressive to cotton. When Israeli isolates of VCGs 2A, 2B and 4B were inoculated to potato and tomato, VCG 4B isolates caused much more severe disease on potato and VCG 2A isolates caused much more severe disease in tomato. Differential patterns of pathogenicity and aggressiveness of these VCGs on potato and tomato were consistent regardless of the host plant of origin. Isolates of the same VCG resembled one another more than isolates from different VCGs based on colony and microsclerotial morphology, temperature responses and, partially, in pathogenicity. Vegetative compatibility grouping of V. dahliae in Israel appears closely associated with specific pathogenicity and other phenotypic traits. The absence of VCG 4A in Israel is significant. VCG patterns among Verficillium populations are useful to predict relatedness and pathogenic potential in both countries.  


2007 ◽  
Vol 10 (21) ◽  
pp. 3910-3914 ◽  
Author(s):  
A. Heydari . ◽  
A. Ahmadi . ◽  
S. Sarkari . ◽  
H. Karbalayi Khiavi . ◽  
M. Delghandi .

Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 531 ◽  
Author(s):  
Amnon Haberman ◽  
Leah Tsror (Lahkim) ◽  
Silit Lazare ◽  
Marina Hazanovsky ◽  
Sara Lebiush ◽  
...  

The global avocado industry is growing, and farmers are seeking to expand their plantations. However, many lands suitable for avocado planting were previously cultivated with hosts of the soil-borne fungal pathogen Verticillium dahliae, which is the causal agent of Verticillium wilt (VW). VW can seriously impair avocado orchards, and therefore, planting on infested soil is not recommended. The use of different rootstock types allows avocado cultivation in various regions with diverse biotic and abiotic constraints. Hence, we tested whether genetic variance among rootstocks may also be used to manage avocado VW. Six hundred trees, mostly Hass and some Ettinger, grafted on 23 selected rootstocks were evaluated for five years in a highly V. dahliae-inoculated plot for VW symptoms, fungal infection, and productivity. The selected rootstocks displayed a significant variation related to VW tolerance, and productive avocado rootstocks with potential VW tolerance were identified. Moreover, the rootstock productivity appears to correlate negatively to the susceptibility level. In conclusion, planting susceptible rootstocks (e.g., VC66, VC152, and VC26) in infested soil increases the likelihood of massive tree loss and low productivity. Whereas, tolerant rootstocks (e.g., VC804 and Dusa) may restrict VW and enable avocado cultivation on infested soils.


2019 ◽  
Vol 26 (7) ◽  
pp. 1315-1324 ◽  
Author(s):  
C. Srinivas ◽  
D. Nirmala Devi ◽  
K. Narasimha Murthy ◽  
Chakrabhavi Dhananjaya Mohan ◽  
T.R. Lakshmeesha ◽  
...  

2013 ◽  
Vol 14 (1) ◽  
pp. 8 ◽  
Author(s):  
S. Sanogo ◽  
J. Schroeder ◽  
S. Thomas ◽  
L. Murray ◽  
N. Schmidt ◽  
...  

The chile pepper (Capsicum annuum) crop is affected by several pests, pathogens, and weeds including Verticillium dahliae, Meloidogyne incognita, spurred anoda (Anoda cristata), Wright groundcherry (Physalis acutifolia), and tall morningglory (Ipomoea purpurea). These weed species are unimpaired hosts to V. dahliae and M. incognita. Chile plants have been found co-infected with V. dahliae and M. incognita in commercial fields. Greenhouse studies were conducted to determine the relationships among V. dahliae, M. incognita, and each of the four aforementioned plant species. Plants were either non-inoculated or inoculated with V. dahliae, M. incognita, or V. dahliae plus M. incognita. Six weeks after inoculation, plant infection by V. dahliae, M. incognita reproduction, plant height and biomass were measured. Three relationships were identified: V. dahliae was recovered from 100% of all four inoculated plant species, irrespective of M. incognita treatment; V. dahliae and M. incognita enhanced or had no effect on weed biomass but were pathogenic to chile; and co-infection by V. dahliae had no effect on nematode reproduction in the first M. incognita generation on the crop or weeds. These biological relationships suggest that the competitive impact of the weeds may increase and pathogen diversity may be affected in infested fields, ultimately impacting the efficacy of our common IPM tools. Accepted for publication 17 July 2013. Published 20 September 2013.


BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 324 ◽  
Author(s):  
Dianguang Xiong ◽  
Yonglin Wang ◽  
Jie Ma ◽  
Steven J Klosterman ◽  
Shuxiao Xiao ◽  
...  

Author(s):  
Edgar A. Chavarro-Carrero ◽  
Jasper P. Vermeulen ◽  
David E. Torres ◽  
Toshiyuki Usami ◽  
Henk J. Schouten ◽  
...  

SUMMARYPlant pathogens secrete effector molecules during host invasion to promote host colonization. However, some of these effectors become recognized by host receptors, encoded by resistance genes, to mount defense response and establish immunity. Recently, a novel resistance was identified in tomato, mediated by the single dominant V2 locus, to control strains of the soil-borne vascular wilt fungus Verticillium dahliae that belong to race 2. We performed comparative genomics between race 2 strains and resistance-breaking race 3 strains to identify the avirulence effector that activates V2 resistance, termed Av2. We identified 277 kb of race 2-specific sequence comprising only two genes that encode predicted secreted proteins, both of which are expressed by V. dahliae during tomato colonization. Subsequent functional analysis based on genetic complementation into race 3 isolates confirmed that one of the two candidates encodes the avirulence effector Av2 that is recognized in V2 tomato plants. The identification of Av2 will not only be helpful to select tomato cultivars that are resistant to race 2 strains of V. dahliae, as the corresponding V2 resistance gene has not yet been mapped, but also to monitor adaptations in the V. dahliae population to deployment of V2-containing tomato cultivars in agriculture.


Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 419-419 ◽  
Author(s):  
T. Cinelli ◽  
D. Rizzo ◽  
G. Marchi ◽  
G. Surico

In April 2012 the presence of hyperplastic outgrowths on trunks, branches, and twigs of sweet olive plants, Osmanthus fragrans Lour (Fam. Oleaceae), was recorded in two ornamental hedges made up of five and four plants, respectively, in the city center of Montecatini (Pistoia-Italy). All sweet olive plants were seriously affected by the disease with outgrowths appearing either singly or close together, often forming a single mass that could extend up to 20 cm along the stems, occasionally surrounding the entire circumference. The symptoms observed on O. fragrans closely resembled those induced by the bacterium Pseudomonas savastanoi on Olea europea (common olive) and other plant species. Suspecting a bacterial origin of the disorder, young knots were collected from four diseased plants and used for bacterial isolation with standard techniques on nutrient sucrose agar medium (1). After 3 days of incubation at 26°C, non-levan forming colonies about 3 mm in diameter that were circular, convex, smooth, and cream colored with entire margins appeared on the surface of the agar medium. Purified isolates were gram negative, levan negative, oxidase negative, potato rot negative, arginine dihydrolase negative, showed a tobacco hypersensitive reaction, and tested positive to PCR screening for the presence of the iaaM (tryptophan-2-monooxygenase), iaaH (indoleacetamide hydrolase), ptz (isopentenyl transferase) (1) and iaaL (IAA-lysine synthethase) (3) genes. Three isolates were selected arbitrarily and further characterized by sequencing a fragment of the housekeeping genes rpoD (sigma factor 70) and pgi (phosphoglucose isomerase) (2). All sequenced gene fragments, of 620 bp and 552 bp for the rpoD and pgi genes, respectively, were identical to those of P. savastanoi pv. savastanoi strain NCPPB3335. The pathogenicity of the three isolates was verified on three O. fragrans plants and three Olea europea (cv. Frantoio) plants. Per each isolate, three 1-cm wounds were made on the branches of each plant using a sterile scalpel dipped in a bacterial suspension (1 × 108 CFU/ml). P. savastanoi pv. savastanoi PVFi-t2b isolated from olive was also inoculated as reference strain. After 30 days, all isolates including the reference strain induced typical knots on both plant species while no symptoms were observed on wounds inoculated with sterile water. Bacteria were reisolated from induced knots and Koch's postulates were confirmed. On the basis of biochemical tests, PCR screening, pathogenicity testing, and sequence analyses, the causal agent of knot disease on O. fragrans was identified as P. savastanoi. The potential susceptibility of O. aquifolium Sieb. to the causal agent of olive knot disease has been demonstrated in the past by means of artificial inoculations but interestingly, in the same trials, O. fragrans had tested negative (4). To the best of our knowledge, this is the world's first report of O. fragrans as natural host of P. savastanoi, which extends the growing list of cultivated and ornamental plant species affected by this phytopathogenic bacterium. References: (1) G. Marchi et al. Eur J. Plant Pathol. 112:101, 2005. (2) N. Parkinson et al. Plant Pathol. 60:338, 2011. (3) R. Penyalver et al. Appl. Environ. Microbiol. 66:2673, 2000. (4) C. O. Smith. Phytopathology 12:271, 1922.


Sign in / Sign up

Export Citation Format

Share Document