scholarly journals First Report of Knot Disease Caused by Pseudomonas savastanoi on Sweet Olive in Central Italy

Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 419-419 ◽  
Author(s):  
T. Cinelli ◽  
D. Rizzo ◽  
G. Marchi ◽  
G. Surico

In April 2012 the presence of hyperplastic outgrowths on trunks, branches, and twigs of sweet olive plants, Osmanthus fragrans Lour (Fam. Oleaceae), was recorded in two ornamental hedges made up of five and four plants, respectively, in the city center of Montecatini (Pistoia-Italy). All sweet olive plants were seriously affected by the disease with outgrowths appearing either singly or close together, often forming a single mass that could extend up to 20 cm along the stems, occasionally surrounding the entire circumference. The symptoms observed on O. fragrans closely resembled those induced by the bacterium Pseudomonas savastanoi on Olea europea (common olive) and other plant species. Suspecting a bacterial origin of the disorder, young knots were collected from four diseased plants and used for bacterial isolation with standard techniques on nutrient sucrose agar medium (1). After 3 days of incubation at 26°C, non-levan forming colonies about 3 mm in diameter that were circular, convex, smooth, and cream colored with entire margins appeared on the surface of the agar medium. Purified isolates were gram negative, levan negative, oxidase negative, potato rot negative, arginine dihydrolase negative, showed a tobacco hypersensitive reaction, and tested positive to PCR screening for the presence of the iaaM (tryptophan-2-monooxygenase), iaaH (indoleacetamide hydrolase), ptz (isopentenyl transferase) (1) and iaaL (IAA-lysine synthethase) (3) genes. Three isolates were selected arbitrarily and further characterized by sequencing a fragment of the housekeeping genes rpoD (sigma factor 70) and pgi (phosphoglucose isomerase) (2). All sequenced gene fragments, of 620 bp and 552 bp for the rpoD and pgi genes, respectively, were identical to those of P. savastanoi pv. savastanoi strain NCPPB3335. The pathogenicity of the three isolates was verified on three O. fragrans plants and three Olea europea (cv. Frantoio) plants. Per each isolate, three 1-cm wounds were made on the branches of each plant using a sterile scalpel dipped in a bacterial suspension (1 × 108 CFU/ml). P. savastanoi pv. savastanoi PVFi-t2b isolated from olive was also inoculated as reference strain. After 30 days, all isolates including the reference strain induced typical knots on both plant species while no symptoms were observed on wounds inoculated with sterile water. Bacteria were reisolated from induced knots and Koch's postulates were confirmed. On the basis of biochemical tests, PCR screening, pathogenicity testing, and sequence analyses, the causal agent of knot disease on O. fragrans was identified as P. savastanoi. The potential susceptibility of O. aquifolium Sieb. to the causal agent of olive knot disease has been demonstrated in the past by means of artificial inoculations but interestingly, in the same trials, O. fragrans had tested negative (4). To the best of our knowledge, this is the world's first report of O. fragrans as natural host of P. savastanoi, which extends the growing list of cultivated and ornamental plant species affected by this phytopathogenic bacterium. References: (1) G. Marchi et al. Eur J. Plant Pathol. 112:101, 2005. (2) N. Parkinson et al. Plant Pathol. 60:338, 2011. (3) R. Penyalver et al. Appl. Environ. Microbiol. 66:2673, 2000. (4) C. O. Smith. Phytopathology 12:271, 1922.

Plant Disease ◽  
2013 ◽  
Vol 97 (11) ◽  
pp. 1504-1504 ◽  
Author(s):  
T. Popović ◽  
Ž. Ivanović ◽  
S. Živković ◽  
N. Trkulja ◽  
M. Ignjatov

In late summer 2011, shallow, irregular cankers were observed on trunks and branches of non-chemically-treated walnut trees (Juglans regia L.) on a 30-year-old orchard in the region of Fruška Gora (Vojvodina, Serbia). Disease incidence was ~80% and yield loss was ~50%. For pathogen isolation, small pieces (~5 mm diameter) of wood tissue collected at the edge of the cankers were macerated in sterile distilled water and streaked onto nutrient agar with 5% sucrose. Plates were then incubated at 28°C for 2 days. The prevalent bacterial colonies and those similar in appearance to Brenneria nigrifluens (Wilson et al.) Hauben et al. were purified on nutrient agar (NA). Eight gram-negative, oxidasenegative, catalase-positive strains, showing oxidative and fermentative metabolism, were selected for further characterization. To identify the bacteria on a molecular basis, we analyzed the 16S rDNA and gyr B gene sequences. The 16S rDNA partial sequences of analyzed strains were amplified using the primers P0 (5′-GAGAGTTTGATCCTGGCTCAG-3′) and P6 (5′-CTACGGCTACCTTGTTACGA-3′) (3). Additionally, the gyr B gene sequences were generated with primers GyrB-F (5′-MGGCGGYAAGTTCGATGACAAYTC-3′) and GyrB-R (5′-TRATBKCAGTCARACCTTCRCGSGC-3′) (2). All amplicons were purified using the QIAquick PCR purification kit (QIAGEN) according to the manufacturer's instructions and sequenced by Macrogen Inc. (Seoul, South Korea) using the same primers used for amplification. The sequences were edited using FinchTV v.1.4.0, assembled using the Clustal W program integrated into MEGA5 software (4), and deposited in NCBI GenBank under accessions JX484738 to 40 for the 16S rDNA gene and KC571240 to 47 for the gyr B gene. The 1,359-bp 16S rDNA sequences obtained for the eight strains were compared to the reference 16S rDNA sequences retrieved from GenBank. BLAST analysis revealed 100% homology of Serbian strains with sequences of B. nigrifluens (Z96095 and FJ611884). The gyr B gene sequences of our strains were 100% homologous to the sequences of B. nigrifluens deposited in GenBank (JF311612 to 15). Pathogenicity of all strains was confirmed on young fruits by infiltration of bacterial suspensions (108 CFU ml–1 from a 48 h NA culture) with syringe into the mesocarp of walnut fruits and by stem infiltration with syringes without needles into branch wounds (1). Inoculated fruits were incubated in plastic boxes for 8 days at 20°C, 80 to 100% RH, with a 12-h photoperiod. Inoculated plants were maintained for 3 months at 22 to 28°C with continuous light and at 70 to 80% RH in plastic tunnels. Inoculated fruits developed bark canker symptoms at the inoculation sites, which became necrotic and released a reddish brown exudate. Necrotic lesions were observed on inoculated branches. B. nigrifluens was reisolated from the margins of necrotic fruit and stem tissue. Physiological and biochemical tests showed that strains grew at 36°C and did not produce arginine dihydrolase, H2S, indole, nitrate, nor a fluorescent pigment on King's B medium. They did not induce a hypersensitive reaction on tobacco leaves and did not hydrolyse gelatin and starch. They produced acid without gas from glucose, inositol, sorbitol, arabinose, and sucrose, but not from maltose and lactose (1). Results of pathogenicity and biochemical tests were also the same for reisolated strains. This is the first report of B. nigrifluens as the causal agent of shallow-bark canker on walnut trees in Serbia. References: (1) E. G. Biosca and M. M. López. J. Plant Pathol. 94:105, 2012. (2) P. Ferrente and M. Scotrichini. Plant Pathol. 59:954, 2010. (3) A. Grifoni et al. FEMS Microbiol. Lett. 127:85, 1995. (4) K. Tamura et al. Mol. Biol. Evol. 28:2731, 2011.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 698-698 ◽  
Author(s):  
Y. Tomitaka ◽  
T. Usugi ◽  
R. Kozuka ◽  
S. Tsuda

In 2009, some commercially grown tomato (Solanum lycopersicum) plants in Chiba Prefecture, Japan, exhibited mosaic symptoms. Ten plants from a total of about 72,000 cultivated plants in the greenhouses showed such symptoms. To identify the causal agent, sap from leaves of the diseased plants was inoculated into Chenopodium quinoa and Nicotiana benthamiana plants. Local necrotic lesions appeared on inoculated leaves of C. quinoa, but no systemic infection was observed. Systemic mosaic symptoms were observed on the N. benthamiana plants inoculated. Single local lesion isolation was performed three times using C. quinoa to obtain a reference isolate for further characterization. N. benthamiana was used for propagation of the isolate. Sap from infected leaves of N. benthamiana was mechanically inoculated into three individual S. lycopersicum cv. Momotaro. Symptoms appearing on inoculated tomatoes were indistinguishable from those of diseased tomato plants found initially in the greenhouse. Flexuous, filamentous particles, ~750 nm long, were observed by electron microscopy in the sap of the tomato plants inoculated with the isolate, indicating that the infecting virus may belong to the family Potyviridae. To determine genomic sequence of the virus, RT-PCR was performed. Total RNA was extracted from the tomato leaves experimentally infected with the isolate using an RNeasy Plant Mini kit (QIAGEN, Hilden, Germany). RT-PCR was performed by using a set of universal, degenerate primers for Potyviruses as previously reported (2). Amplicons (~1,500 bp) generated by RT-PCR were extracted from the gels using the QIAquick Gel Extraction kit (QIAGEN) and cloned into pCR-BluntII TOPO (Invitrogen, San Diego, CA). DNA sequences of three individual clones were determined using a combination of plasmid and virus-specific primers, showing that identity among three clones was 99.8%. A consensus nucleotide sequence of the isolate was deposited in GenBank (AB823816). BLASTn analysis of the nucleotide sequence determined showed 99% identity with a partial sequence in the NIb/coat protein (CP) region of Colombian datura virus (CDV) tobacco isolate (JQ801448). Comparison of the amino acid sequence predicted for the CP with previously reported sequences for CDV (AY621656, AJ237923, EU571230, AM113759, AM113754, and AM113761) showed 97 to 100% identity range. Subsequently, CDV infection in both the original and experimentally inoculated plants was confirmed by RT-PCR using CDV-specific primers (CDVv and CDVvc; [1]), and, hence, the causal agent of the tomato disease observed in greenhouse tomatoes was proved to be CDV. The first case of CDV on tomato was reported in Netherlands (3), indicating that CDV was transmitted by aphids from CDV-infected Brugmansia plants cultivated in the same greenhouse. We carefully investigated whether Brugmansia plants naturally grew around the greenhouses, but we could not find them inside or in proximity to the greenhouses. Therefore, sources of CDV inoculum in Japan are still unclear. This is the first report of a mosaic disease caused by CDV on commercially cultivated S. lycopersicum in Japan. References: (1) D. O. Chellemi et al. Plant Dis. 95:755, 2011. (2) J. Chen et al. Arch. Virol. 146:757, 2001. (3) J. Th. J. Verhoeven et al. Eur. J. Plant. Pathol. 102:895, 1996.


1996 ◽  
Vol 51 (5-6) ◽  
pp. 426-428 ◽  
Author(s):  
P.V. Monje ◽  
E.J. Baran

Abstract The isolation of well formed crystals of the biomineral weddellite (calcium oxalate dihydrate) from Chamaecereus silvestrii, a Cactaceae species found in the northern part of Argentina, is described. Infrared spectroscopic measurements allow an unambiguous characterization of the nature of the crystals. This is the first report of the presence of a biomineral in this plant species.


2015 ◽  
Vol 16 (1) ◽  
pp. 29-30 ◽  
Author(s):  
Carlye A. Baker ◽  
Scott Adkins

To the best of our knowledge, this is the first report of TCSV infection of H. wayetii and S. truncata from any location, although other tospoviruses are known to infect these and related plant species. The identification of these two diverse plant species as the first reported natural ornamental hosts of TCSV has implications for TCSV epidemiology and management in ornamental and vegetable crops, which frequently share production space. Accepted by publication 15 January 2015. Published 25 February 2015.


2018 ◽  
Vol 7 (3) ◽  
pp. 131-131
Author(s):  
Raees Ahmed ◽  
Amjad S. Gondal ◽  
Muhammad Tariq Khan ◽  
Shazia Shahzaman ◽  
Sajjad Hyder

Gray mold caused by Botrytis cinerea is an important disease that attacks fruits, leaves and twigs of peach. Peach is grown on an area of 18,008 ha with an average production of 72,085 tons per year in Pakistan (FAO, 2017). During May 2017, brown spots on 33% of the peach fruits examined were observed in Swat district of KPK province of Pakistan. Infected fruits were incubated at 25±2 °C in a humid chamber resulted in greyish mycelial growth with light brown lesions. Hyphal growths on infected fruits were cultured on PDA media and purified by hyphal tip method. Morphologically whitish grey growth was observed on PDA and later on dark sclerotia were observed after 6-7 days of incubation. Hyphae were found septate with branched hyaline conidiophores having a bunch of ovoid conidia at their tips. Further confirmations were done by amplifying internal transcribed spacer regions (Andrew et al., 2009) and glyceraldehyde-3-phosphate dehydrogenase (G3PDH) region of the isolates (Li et al., 2012). Amplicons sequenced from Macrogen Korea were blasted and submitted in NCBI showed that ITS sequences (Accessions MH049690 and MH049691) were 99% identical with already reported (MG878388 and MG654661) sequences and the G3PDH gene sequences (Accessions MH560352 and MH560353) were 99 % identical with already reported (Accessions MG204876) sequences of B. cinerea. Pathogenicity was confirmed on healthy peach fruits disinfected with 50% ethanol, inoculated by placing a plug of about 1cm2 taken from the edge of actively growing B. cinerea isolate (BTS-16). Fruits were incubated at 25±2 °C in a humid chamber (Abata et al., 2016). A set of healthy fruits mock-inoculated with a plug of agar medium were used as control. Three days after inoculation, inoculated fruits showed sunken lesions with cottony greyish mycelial growth on their surface. Fungus isolated from these infections was re-confirmed as B. cinerea. Conducive environment for the disease progression in nearby areas can result into a huge loss in peach produce so there is a need to devise management strategies to cope with the pathogen. This is the first report of gray mold disease of peach caused by B. cinerea from Pakistan. 


Plant Disease ◽  
2012 ◽  
Vol 96 (1) ◽  
pp. 143-143 ◽  
Author(s):  
M. Cadavid ◽  
J. C. Ángel ◽  
J. I. Victoria

Symptoms of sugarcane orange rust were first observed in July 2010 on sugarcane (interspecific hybrid of Saccharum L. species) cv. CC 01-1884 planted in the La Cabaña Sugar Mill, Puerto Tejada, Colombia. Morphological features of uredinial lesions and urediniospores inspected with an optical microscope and scanning electron microscopy were distinct from common rust of sugarcane caused by Puccinia melanocephala Syd. & P. Syd., revealing spores identical morphologically to those described for the fungus P. kuehnii (Kruger) E. Butler, causal agent of sugarcane orange rust (1,3). Uredinial lesions were orange and distinctly lighter in color than pustules of P. melanocephala. Urediniospores were orange to light cinnamon brown, mostly ovoid to pyriform, variable in size (27.3 to 39.2 × 16.7 to 21.2 μm), with pronounced apical wall and moderately echinulate with spines evenly distributed. Paraphyses, telia, and teliospores were not observed. Species-specific PCR primers designed from the internal transcribed spacer (ITS)1, ITS2, and 5.8S rDNA regions of P. melanocephala and P. kuehnii were used to differentiate the two species (2). The primers Pm1-F and Pm1-R amplified a 480-bp product from P. melanocepahala DNA in leaf samples with symptoms of common rust. By contrast, the primers Pk1-F and Pk1-R generated a 527-bp product from presumed P. kuehnii DNA in leaf samples with signs of orange rust, confirming the identity as P. kuehnii. The Centro de Investigación de la Caña de Azúcar de Colombia (Cenicaña) started a survey of different cultivars in nurseries and experimental and commercial fields in the Cauca River Valley and collected leaf samples for additional analyses. Experimental cvs. CC 01-1884, CC 01-1866, and CC 01-1305 were found to be highly susceptible to orange rust and were eliminated from regional trials, whereas commercial cvs. CC 85-92 and CC 84-75, the most widely grown cultivars, were resistant. With the discovery of orange rust of sugarcane in Colombia, Cenicaña has incorporated orange rust resistance in the selection and development of new cultivars. To our knowledge, this is the first report of P. kuehnii on sugarcane in Colombia. Orange rust has also been reported from the United States, Cuba, Mexico, Guatemala, Nicaragua, El Salvador, Costa Rica, Panama, Ecuador, and Brazil. References: (1) J. C. Comstock et al. Plant Dis. 92:175, 2008. (2) N. C. Glynn et al. Plant Pathol. 59:703, 2010. (3) E. V. Virtudazo et al. Mycoscience 42:167, 2001.


Plant Disease ◽  
2017 ◽  
Vol 101 (6) ◽  
pp. 1059 ◽  
Author(s):  
R. Petry ◽  
M. E. N. Fonseca ◽  
L. S. Boiteux ◽  
A. Reis

Plant Disease ◽  
2003 ◽  
Vol 87 (5) ◽  
pp. 603-603 ◽  
Author(s):  
C. J. Chamberlain ◽  
J. Kraus ◽  
P. D. Kohnen ◽  
C. E. Finn ◽  
R. R. Martin

Raspberry bushy dwarf virus (RBDV), genus Idaeovirus, has been reported in commercial Rubus spp. from North and South America, Europe, Australia, New Zealand, and South Africa. Infection can cause reduced vigor and drupelet abortion leading to crumbly fruit and reduced yields (3,4). In recent years, Rubus germplasm in the form of seed, was obtained on several collection trips to The People's Republic of China to increase the diversity of Rubus spp. in the USDA-ARS National Clonal Germplasm Repository, (Corvallis, OR). Before planting in the field, seedlings were tested for the presence of RBDV, Tomato ringspot virus, and Tobacco streak virus using triple-antibody sandwich enzyme-linked immunosorbent assay (TAS-ELISA) (antiserum produced by R. R. Martin). One symptomless plant of R. multibracteatus H. Lev. & Vaniot (PI 618457 in USDA-ARS GRIN database), from Guizhou province in China, tested positive for RBDV (RBDV-China). After mechanical transmission on Chenopodium quinoa Willd., this isolate produced typical symptoms of RBDV (3). To determine if RBDV-China was a contaminant during the handling of the plants, or if the source was a seedborne virus, the coat protein gene was sequenced and compared to published sequences of RBDV. RNA was extracted from leaves of R. multibracteatus and subjected to reverse transcription-polymerase chain reaction (RT-PCR) using primers that flank the coat protein gene. Products from four separate PCR reactions were sequenced directly or were cloned into the plasmid vector pCR 2.1 (Invitrogen, Carlsbad, CA) and then sequenced. The coding sequence of the coat protein gene of RBDV-China was 87.5% (722/825) identical to that isolated from black raspberry (Genbank Accession No. s55890). The predicted amino acid sequences were 91.6% (251/274) identical. Previously, a maximum of five amino acid differences had been observed in the coat proteins of different RBDV strains (1). The 23 differences observed between RBDV-China and the isolate from black raspberry (s55890) confirm that the RBDV in R. multibracteatus is not a greenhouse contaminant but is indeed a unique strain of RBDV. In addition, monoclonal antibodies (MAbs) to RBDV (2) were tested against RBDV-China. In these tests, MAb D1 did not detect RBDV-China, whereas MAb R2 and R5 were able to detect the strain. This is the first strain of RBDV that has been clearly differentiated by MAbs using standard TAS-ELISA tests. Although RBDV is common in commercial Rubus spp. worldwide, to our knowledge, this is the first report of RBDV in R. multibracteatus, and the first report of RBDV from China. The effects of this new strain of RBDV could be more or less severe, or have a different host range than previously studied strains. It is more divergent from the type isolate than any other strain that has been studied to date. Phylogenetic analysis of coat protein genes of RBDV may be useful in understanding the evolution and spread of this virus. References: (1) A. T. Jones et al. Eur. J. Plant Pathol. 106:623, 2000. (2) R. R. Martin. Can. J. Plant. Pathol. 6:264, 1984. (3) A. F. Murant. Raspberry Bushy Dwarf. Page 229 in: Virus Diseases of Small Fruits. R. H. Converse, ed. U.S. Dep. Agric. Agric. Handb. 631, 1987. (4) B. Strik and R. R. Martin. Plant Dis. 87:294, 2003.


Plant Disease ◽  
1998 ◽  
Vol 82 (1) ◽  
pp. 127-127 ◽  
Author(s):  
Vipin Hallan ◽  
Sangeeta Saxena ◽  
B. P. Singh

Triumffeta rhomboidiaceae Jacq. (Tiliaceae family) is an annual rainy season weed that is commonly found throughout India. For the last 3 years, during the rainy season, several plants of T. rhomboidiaceae in and around the gardens of the National Botanical Research Institute have been found with vein yellowing symptoms. The initial symptoms were vein clearing but in later stages the veins became yellow and thickened. In severe cases, the chlorosis extends into interveinal areas, resulting in complete yellowing of the leaves. In a few cases, green leafy or thorny enations could be seen on the dorsal side of the leaf. The disease was investigated to identify the causal agent. Vector transmission studies showed that the causal agent is transmitted by the whitefly, Bemisia tabaci, from infected to healthy seedlings of T. rhomdoidiaceae. Since whitefly transmission of the disease is consistent with a geminivirus as the causal agent, the role of such a virus was investigated. DNA isolated from Triumffeta plants (both from the infected plants in the field as well as from those inoculated experimentally in the greenhouse) showing above mentioned symptoms was amplified with two sets of degenerate primers, PAL1v1978/PAR1c496 (set 1) and PAL1v1978/PCRc1 (set 2), that have been shown to be specific for DNA-A of whitefly transmitted geminiviruses (WTGs), in polymerase chain reaction (1). We could amplify DNA-A fragments of approximately 1.2 kb from set 1 and 0.7 kb from set 2, as expected (1). DNA isolated from healthy seedlings gave no amplification of such fragments. Identification of the amplified DNA fragments (from infected samples) to be of geminiviral in nature was confirmed by Southern blot hybridization carried out under high stringency conditions. DNA-A of Indian tomato leaf curl virus (2) was used as a general probe for WTGs for the above hybridization experiment. Therefore, Triumffeta yellow net disease is caused by a geminivirus. A review of literature revealed that there is no record of a viral disease affecting this weed and, therefore, this is the first report of a viral disease affecting this plant. References: (1) M. R. Rojas et al. Plant Dis. 77:340, 1993. (2) K. M. Srivastava et al. J. Virol. Methods 51:297, 1995.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yuexuan Long ◽  
Mingxue Shang ◽  
Yue Deng ◽  
Chuan Yu ◽  
Mingde Wu ◽  
...  

Brassica juncea var. multisecta, a leafy mustard, is widely grown in China as a vegetable (Fahey 2016). In May 2018, blackleg symptoms, grayish lesions with black pycnidia, were found on stems and leaves of B. juncea var. multisecta during disease surveys in Wuhan, Hubei Province. Disease incidence was approximately 82% of plants in the surveyed fields (~1 ha in total). To determine the causal agent of the disease, twelve diseased petioles were surface-sterilized and then cultured on potato dextrose agar (PDA) at 20˚C for 5 days. Six fungal isolates (50%) were obtained. All showed fluffy white aerial mycelia on the colony surface and produced a yellow pigment in PDA. In addition, pink conidial ooze formed on top of pycnidia after 20 days of cultivation on a V8 juice agar. Pycnidia were black-brown and globose with average size of 145 × 138 μm and ranged between 78 to 240 × 71 to 220 μm, n = 50. The conidia were cylindrical, hyaline, and 5.0 × 2.1 μm (4 to 7.1 × 1.4 to 2.9 μm, n=100). These results indicated that the fungus was Leptosphaeria biglobosa rather than L. maculans, as only the former produces yellow pigment (Williams and Fitt 1999). For molecular confirmation of identify, genomic DNAs were extracted and tested through polymerase chain reaction (PCR) assay using the species-specific primers LbigF, LmacF, and LmacR (Liu et al. 2006), of which DNA samples of L. maculans isolate UK-1 (kindly provided by Dr. Yongju Huang of University of Hertfordshire) and L. biglobosa ‘brassicae’ isolate B2003 (Cai et al. 2014) served as controls. Moreover, the sequences coding for actin, β-tubulin, and the internal transcribed spacer (ITS) region of ribosomal DNA (Vincenot et al. 2008) of isolates HYJ-1, HYJ-2 and HYJ-3 were also cloned and sequenced. All six isolates only produced a 444-bp DNA fragment, the same as isolate B2003, indicating they belonged to L. biglobosa ‘brassicae’, as L. maculans generates a 331-bp DNA fragment. In addition, sequences of ITS (GenBank accession no. MN814012, MN814013, MN814014), actin (MN814292, MN814293, MN814294), and β-tubulin (MN814295, MN814296, MN814297) of isolates HYJ-1, HYJ-2 and HYJ-3 were 100% identical to the ITS (KC880981), actin (AY748949), and β-tubulin (AY748995) of L. biglobosa ‘brassicae’ strains in GenBank, respectively. To determine their pathogenicity, needle-wounded cotyledons (14 days) of B. juncea var. multisecta ‘K618’ were inoculated with a conidial suspension (1 × 107 conidia/ml, 10 μl per site) of two isolates HYJ-1 and HYJ-3, twelve seedlings per isolate (24 cotyledons), while the control group was only treated with sterile water. All seedlings were incubated in a growth chamber (20°C, 100% relative humidity under 12 h of light/12 h of dark) for 10 days. Seedlings inoculated with conidia showed necrotic lesions, whereas control group remained asymptomatic. Two fungal isolates showing the same culture morphology to the original isolates were re-isolated from the necrotic lesions. Therefore, L. biglobosa ‘brassicae’ was confirmed to be the causal agent of blackleg on B. juncea var. multisecta in China. L. biglobosa ‘brassicae’ has been reported on many Brassica crops in China, such as B. napus (Fitt et al. 2006), B. oleracea (Zhou et al. 2019), B. juncea var. multiceps (Zhou et al. 2019), B. juncea var. tumida (Deng et al. 2020). To our knowledge this is the first report of L. biglobosa ‘brassicae’ causing blackleg on B. juncea var. multisecta in China, and its occurrence might be a new threat to leafy mustard production of China.


Sign in / Sign up

Export Citation Format

Share Document