scholarly journals Chemical Structure, Biological Roles, Biosynthesis and Regulation of the Yellow Xanthomonadin Pigments in the Phytopathogenic Genus Xanthomonas

2020 ◽  
Vol 33 (5) ◽  
pp. 705-714 ◽  
Author(s):  
Ya-Wen He ◽  
Xue-Qiang Cao ◽  
Alan R. Poplawsky

Xanthomonadins are membrane-bound yellow pigments that are typically produced by phytopathogenic bacterial Xanthomonas spp., Xylella fastidiosa, and Pseudoxanthomonas spp. They are also produced by a diversity of environmental bacterial species. Considerable research has revealed that they are a unique group of halogenated, aryl-polyene, water-insoluble pigments. Xanthomonadins have been shown to play important roles in epiphytic survival and host-pathogen interactions in the phytopathogen Xanthomonas campestris pv. campestris, which is the causal agent of black rot in crucifers. Here, we review recent advances in the understanding of xanthomonadin chemical structures, physiological roles, biosynthetic pathways, regulatory mechanisms, and crosstalk with other signaling pathways. The aim of the present review is to provide clues for further in-depth research on xanthomonadins from Xanthomonas and other related bacterial species.

2019 ◽  
Vol 32 (2) ◽  
pp. 217-226 ◽  
Author(s):  
Lian Zhou ◽  
Ming Li ◽  
Xing-Yu Wang ◽  
Hao Liu ◽  
Shuang Sun ◽  
...  

Coenzyme Q (CoQ) is a lipid-soluble membrane component found in organisms ranging from bacteria to mammals. The biosynthesis of CoQ has been intensively studied in Escherichia coli, where 12 genes (ubiA, -B, -C, -D, -E, -F, -G, -H, -I, -J, -K, and -X) are involved. In this study, we first investigated the putative genes for CoQ8 biosynthesis in the phytopathogen Xanthomonas campestris pv. campestris using a combination of bioinformatic, genetic, and biochemical methods. We showed that Xc_0489 (coq7Xc) encodes a di-iron carboxylate monooxygenase filling the E. coli UbiF role for hydroxylation at C-6 of the aromatic ring. Xc_0233 (ubiJXc) encodes a novel protein with an E. coli UbiJ-like domain organization and is required for CoQ8 biosynthesis. The X. campestris pv. campestris decarboxylase gene remains unidentified. Further functional analysis showed that ubiB and ubiK homologs ubiBXc and ubiKXc are required for CoQ8 biosynthesis in X. campestris pv. campestris. Deletion of ubiJXc, ubiBXc, and ubiKXc led to the accumulation of an intermediate 3-octaprenyl-4-hydroxybenzoic acid. UbiKXc interacts with UbiJXc and UbiBXc to form a regulatory complex. Deletion analyses of these CoQ8 biosynthetic genes indicated that they are important for virulence in Chinese radish. These results suggest that the X. campestris pv. campestris CoQ8 biosynthetic reactions and regulatory mechanisms are divergent from those of E. coli. The variations provide an opportunity for the design of highly specific inhibitors for the prevention of infection by the phytopathogen X. campestris pv. campestris.


1998 ◽  
Vol 11 (6) ◽  
pp. 466-475 ◽  
Author(s):  
A. R. Poplawsky ◽  
W. Chun

When cauliflower plants (Brassica oleraceae) were misted with bacterial suspensions of Xanthomonas campestris pv. campestris (causal agent of black rot of cruciferous plants), two separate populations of the pathogen were associated with the leaves. Initially, bacteria removable by sonication and sensitive to sodium hypochlorite treatment predominated (easily removable epiphytic bacteria, EREB). However, after 2 weeks, bacteria not removable by sonication and insensitive to sodium hypochlorite treatment were dominant. Although the exact location of this second population of the pathogen was not determined, evidence is presented to support its location in protected sites on the leaf surface. pigB of this pathogen is required for production of extracellular polysaccharide (EPS), xanthomonadin pigments, and the diffusible signal molecule, DF (diffusible factor). DF can extracellularly restore EPS and xanthomonadin production to pigB mutant strains. Parent strain B-24 and pigB mutant strain B24-B2 were identical for in planta growth and symptomatology after artificial infection by injection in leaf mid-veins. Subsequently, X. campestris pv. campestris parent strain B-24, Tn3HoHo1 pigB insertion mutation strain B24-B2, chromosomally restored pigB mutation strain B24-B2R, and strain B24-79 with a Tn3HoHo1 insertion in an unrelated part of the genome were compared for epiphytic survival on, and natural infection of, cauliflower. After application, strains B-24, B24-B2R, and B24-79 all maintained leaf EREB populations of between approximately 3 and 6 (log [1 + CFU per g of fresh weight]) over a 3-week period, whereas B24-B2 populations fell to nearly undetectable levels. Plants sprayed with strains B-24, B24-B2R, and B24-79 averaged between 1.0 and 1.2 lesions, whereas those sprayed with B24-B2 averaged only 0.03 lesions per plant after 3 weeks. Differences in EREB population levels did not explain the observed differences in host infection frequencies, and the results indicated that strain B24-B2 was reduced in its ability to infect the host via the hydathodes, but unaffected in infection via wounds. When strains B-24 and B24-B2 were mixed in equal numbers and sprayed on plants together, B24-B2 epiphytic populations were intermediate between those of B-24 applied alone and B24-B2 applied alone. These results indicate that a functional pigB is required for epiphytic survival and natural host infection under the experimental conditions tested, and suggest that DF, xanthomonadins, and EPS could all be important for survival of this pathogen on the leaf surface, and/or for host infection.


2018 ◽  
Vol 98 (5) ◽  
pp. 1119-1125 ◽  
Author(s):  
Khandker Shazia Afrin ◽  
Md Abdur Rahim ◽  
Mehede Hassan Rubel ◽  
Sathishkumar Natarajan ◽  
Jae-Young Song ◽  
...  

Race-specific molecular markers were established to distinguish Xanthomonas campestris pv. campestris (Xcc) race 3, the causal agent of black rot disease of crucifers. The available genome sequences of Xcc races were aligned and identified three DNA fragments specific to Xcc race 3. The identified race-specific DNA fragments namely XccR3-49, XccR3-52, and XccR3-55 were used for designing the race-specific primers to detect and identify Xcc race 3. The specificity of race-specific primers was tested against the genomic DNA extracted from Xcc (races 1–7), Xcc strains, Xc pathovars, and other bacterial species. XccR3-49, a specific sequence characterized amplified region (SCAR) primer set, gave a single band with 867 bp length for Xcc race 3 only. The remaining two markers XccR3-52 and XccR3-55 showed polymorphic amplification with amplicon sizes of 1889 and 2109 bp for Xcc race 3, respectively. Additionally, the SCAR primer set detected Xcc race 3 rapidly and efficiently in artificially infected cabbage leaves with bio-PCR. This result showed that the newly developed race-specific markers can successfully and efficiently detect and identify Xcc race 3 from Xanthomonas campestris pv. campestris races, Xanthomonas species/pathovars, as well as other plant pathogenic bacteria (Pseudomonas syringae pv. maculicola and Erwinia carotovora subsp. carotovora). Up to now, this is the first report describing the race-specific marker for the detection of Xcc race 3.


Author(s):  
N.-H. Cho ◽  
K.M. Krishnan ◽  
D.B. Bogy

Diamond-like carbon (DLC) films have attracted much attention due to their useful properties and applications. These properties are quite variable depending on film preparation techniques and conditions, DLC is a metastable state formed from highly non-equilibrium phases during the condensation of ionized particles. The nature of the films is therefore strongly dependent on their particular chemical structures. In this study, electron energy loss spectroscopy (EELS) was used to investigate how the chemical bonding configurations of DLC films vary as a function of sputtering power densities. The electrical resistivity of the films was determined, and related to their chemical structure.DLC films with a thickness of about 300Å were prepared at 0.1, 1.1, 2.1, and 10.0 watts/cm2, respectively, on NaCl substrates by d.c. magnetron sputtering. EEL spectra were obtained from diamond, graphite, and the films using a JEOL 200 CX electron microscope operating at 200 kV. A Gatan parallel EEL spectrometer and a Kevex data aquisition system were used to analyze the energy distribution of transmitted electrons. The electrical resistivity of the films was measured by the four point probe method.


2020 ◽  
Vol 15 (1) ◽  
pp. 82-88
Author(s):  
Mikhail Kuznetsov ◽  
◽  
Anatoly Scherbakov ◽  
Elena Gorelnikova ◽  
Nadezhda Chervyakova ◽  
...  

2021 ◽  
Author(s):  
João César da Silva ◽  
Tadeu Antônio Fernandes da Silva Júnior ◽  
José Marcelo Soman ◽  
Daniele Maria do Nascimento ◽  
Luana Laurindo de Melo ◽  
...  

2021 ◽  
Vol 27 ◽  
pp. 102284
Author(s):  
Jakub Pečenka ◽  
Zuzana Bytešníková ◽  
Tomáš Kiss ◽  
Eliška Peňázová ◽  
Miroslav Baránek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document