scholarly journals Transcript Profiling in the Barley Mildew Pathogen Blumeria graminis by Serial Analysis of Gene Expression (SAGE)

2002 ◽  
Vol 15 (8) ◽  
pp. 847-856 ◽  
Author(s):  
Stephen W. Thomas ◽  
Mikkel A. Glaring ◽  
Søren W. Rasmussen ◽  
Julia T. Kinane ◽  
Richard P. Oliver

The fungal pathogen Blumeria graminis f. sp. hordei develops on the barley leaf via distinct, morphologically well-defined stages. After landing on a host plant, the conidia rapidly germinate to form a primary germ tube. Subsequently, an appressorial germ tube emerges from the conidium and differentiates an appressorium from which penetration of the host cell wall is attempted. We have used serial analysis of gene expression to provide a measurement of messenger RNA contents in ungerminated conidia, during conidial germination, and during appressorium formation. The resulting data provide a resource for the characterization of changes in transcript accumulation during early development of B. graminis.

Pathogens ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 45
Author(s):  
Koreyuki Sugai ◽  
Hiroshi Inoue ◽  
Chie Inoue ◽  
Mayuko Sato ◽  
Mayumi Wakazaki ◽  
...  

High humidity decreases the penetration rate of barley powdery mildew Blumeria graminis f. sp. hordei. However, the mechanism is not well understood. In this study, the morphological and cytochemical analyses revealed that substances containing proteins leaked from the tip of the appressorial germ tube of conidia without the formation of appressorium under a high humidity condition. In addition, exposure to high humidity prior to the formation of appressorium caused the aberrant formation of the appressorial germ tube without appressorium formation, resulting in failure to penetrate the host cell. These findings suggest that the formation and maturation of the appressorium requires a low humidity condition, and will be clues to improve the disease management by humidity control.


Science ◽  
2019 ◽  
Vol 366 (6462) ◽  
pp. eaav2642 ◽  
Author(s):  
Sara B. Noya ◽  
David Colameo ◽  
Franziska Brüning ◽  
Andrea Spinnler ◽  
Dennis Mircsof ◽  
...  

Neurons have adapted mechanisms to traffic RNA and protein into distant dendritic and axonal arbors. Taking a biochemical approach, we reveal that forebrain synaptic transcript accumulation shows overwhelmingly daily rhythms, with two-thirds of synaptic transcripts showing time-of-day–dependent abundance independent of oscillations in the soma. These transcripts formed two sharp temporal and functional clusters, with transcripts preceding dawn related to metabolism and translation and those anticipating dusk related to synaptic transmission. Characterization of the synaptic proteome around the clock demonstrates the functional relevance of temporal gating for synaptic processes and energy homeostasis. Unexpectedly, sleep deprivation completely abolished proteome but not transcript oscillations. Altogether, the emerging picture is one of a circadian anticipation of messenger RNA needs in the synapse followed by translation as demanded by sleep-wake cycles.


2002 ◽  
Vol 80 (10) ◽  
pp. 1121-1125 ◽  
Author(s):  
H H Edwards

Development of primary germ tubes from conidia of Blumeria graminis f.sp. hordei on primary leaf segments of Hordeum vulgare was investigated from 3 to 13 h postinoculation (hpi) using transmission electron microscopy. By 3 hpi, the primary germ tube wall that makes contact with the host cuticle develops a small protrusion that breaches the host cuticle and touches the host cell wall but does not penetrate any further. This protrusion is the cuticular peg. From 3 to 13 hpi, the cuticular peg swells, becomes quite electron dense, and finally develops a loose fibrillar texture. The structure of the primary germ tube with the terminal cuticular peg is consistent with the hypothesis that it allows the conidium to absorb water and solutes present in the host cell wall.Key words: powdery mildew, barley, ultrastructure.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 524
Author(s):  
Bingqi Wu ◽  
Zhiting Chen ◽  
Xiaohui Xu ◽  
Ronghua Chen ◽  
Siwei Wang ◽  
...  

Functional characterization of plant agrichemical transporters provided an opportunity to discover molecules that have a high mobility in plants and have the potential to increase the amount of pesticides reaching damage sites. Agrobacterium-mediated transient expression in tobacco is simple and fast, and its protein expression efficiency is high; this system is generally used to mediate heterologous gene expression. In this article, transient expression of tobacco nicotine uptake permease (NtNUP1) and rice polyamine uptake transporter 1 (OsPUT1) in Nicotiana benthamiana was performed to investigate whether this system is useful as a platform for studying the interactions between plant transporters and pesticides. The results showed that NtNUP1 increases nicotine uptake in N. benthamiana foliar discs and protoplasts, indicating that this transient gene expression system is feasible for studying gene function. Moreover, yeast expression of OsPUT1 apparently increases methomyl uptake. Overall, this method of constructing a transient gene expression system is useful for improving the efficiency of analyzing the functions of plant heterologous transporter-encoding genes and revealed that this system can be further used to study the functions of transporters and pesticides, especially their interactions.


Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 121-132
Author(s):  
Zhen Hu ◽  
Yingzi Yue ◽  
Hua Jiang ◽  
Bin Zhang ◽  
Peter W Sherwood ◽  
...  

Abstract Expression of the MAL genes required for maltose fermentation in Saccharomyces cerevisiae is induced by maltose and repressed by glucose. Maltose-inducible regulation requires maltose permease and the MAL-activator protein, a DNA-binding transcription factor encoded by MAL63 and its homologues at the other MAL loci. Previously, we showed that the Mig1 repressor mediates glucose repression of MAL gene expression. Glucose also blocks MAL-activator-mediated maltose induction through a Mig1p-independent mechanism that we refer to as glucose inhibition. Here we report the characterization of this process. Our results indicate that glucose inhibition is also Mig2p independent. Moreover, we show that neither overexpression of the MAL-activator nor elimination of inducer exclusion is sufficient to relieve glucose inhibition, suggesting that glucose acts to inhibit induction by affecting maltose sensing and/or signaling. The glucose inhibition pathway requires HXK2, REG1, and GSF1 and appears to overlap upstream with the glucose repression pathway. The likely target of glucose inhibition is Snf1 protein kinase. Evidence is presented indicating that, in addition to its role in the inactivation of Mig1p, Snf1p is required post-transcriptionally for the synthesis of maltose permease whose function is essential for maltose induction.


Sign in / Sign up

Export Citation Format

Share Document