scholarly journals The Root-Knot Nematode Resistance Gene Mi-1.2 of Tomato Is Responsible for Resistance Against the Whitefly Bemisia tabaci

2003 ◽  
Vol 16 (7) ◽  
pp. 645-649 ◽  
Author(s):  
Gloria Nombela ◽  
Valerie M. Williamson ◽  
Mariano Muñiz

The tomato gene Mi-1.2 confers resistance against root-knot nematodes and some isolates of potato aphid. Resistance to the whitefly Bemisia tabaci previously has been observed in Mi-bearing commercial tomato cultivars, suggesting that Mi, or a closely linked gene, is responsible for the resistance. The response of two biotypes of B. tabaci to tomato carrying the cloned Mi was compared with that of the isogenic untransformed tomato line Moneymaker. Our results indicate that Mi-1.2 is responsible for the resistance in tomato plants to both B- and Q- biotypes. Mi-1.2 is unique among characterized resistance genes in its activity against three very different organisms (root-knot nematodes, aphids, and whiteflies). These pests are among the most important on tomato crops worldwide, making Mi a valuable resource in integrated pest management programs.

EDIS ◽  
2019 ◽  
Vol 2019 (5) ◽  
pp. 5
Author(s):  
Homan Regmi ◽  
Johan Desaeger

Tomatoes are a major commodity in Florida, with an estimated production value of $453 million. Among the many pests and diseases that affect tomatoes, nematodes are one of the major problems. Since the ban on methyl bromide, these ubiquitous soil pests have become much more difficult to manage. This 5-page fact sheet written by Homan Regmi and Johan Desaeger and published by the UF/IFAS Entomology and Nematology Department discusses the use of nematode-resistant tomato cultivars as a tool to help manage root-knot nematodes in Florida. http://edis.ifas.ufl.edu/in1250


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 766B-766 ◽  
Author(s):  
Richard L. Fery* ◽  
Judy A. Thies

Root-knot nematodes (Meloidogyne spp.) are major pests of pepper (Capsicum spp.) in the United States, and parasitism of susceptible plants can result in severe yield losses. Although cultivars belonging to the species C. annuum account for most of the peppers grown in the United States. Habanero-type cultivars belonging to the species C. chinense are becoming increasingly popular. Unfortunately, all commercial Habanero-type cultivars are susceptible to root-knot nematodes. In 1997, the USDA released three C. chinense germplasm lines that exhibit high levels of resistance to root-knot nematodes. The resistance in these lines is conditioned by a single dominant gene, and this gene conditions resistance to the southern root-knot nematode (M. incognita), the peanut root-knot nematode (M. arenaria race 1), and the tropical root-knot nematode (M. javanica). A recurrent backcross breeding procedure has been used to transfer the C. chinense root-knot nematode resistance gene in Habanero-type germplasm. Several root-knot nematode resistant, Habanero-type candidate cultivars have been developed. Each of these Habanero-type candidate cultivars has a compact plant habit and produces a high yield of orange-colored, lantern-shaped fruit.


1993 ◽  
Vol 23 (1) ◽  
pp. 185-192 ◽  
Author(s):  
Raymond A. J. J. van Daelen ◽  
Frans Gerbens ◽  
Fred van Ruissen ◽  
Jac Aarts ◽  
Jan Hontelez ◽  
...  

Nematology ◽  
2011 ◽  
Vol 13 (5) ◽  
pp. 509-520 ◽  
Author(s):  
Tushar K. Dutta ◽  
Stephen J. Powers ◽  
Brian R. Kerry ◽  
Hari S. Gaur ◽  
Rosane H.C. Curtis

AbstractThe rice root-knot nematode Meloidogyne graminicola normally infects rice, wheat and several other graminaceous plants. Meloidogyne incognita is a serious pest of dicotyledonous crops, although it can infect and reproduce on some cereals. This paper demonstrates and compares host recognition, development and reproduction of these two species of root-knot nematodes on rice and tomato plants. Attraction bioassays in pluronic gel clearly showed that M. incognita preferred tomato roots to rice or mustard roots, whilst M. graminicola was more attracted towards rice compared with tomato or mustard roots. Based on the attraction data from this study, it can be hypothesised that either: i) the blend of attractants and repellents are different in good and poor hosts; or ii) relatively long-range attractants, together with shorter-range repellents, might affect nematode movement patterns. Some host specific attractants might also be involved. Meloidogyne incognita was able to invade and develop to adult female but did not produce eggs in rice roots. By contrast, M. graminicola developed and reproduced faster on both rice and tomato plants compared with M. incognita. Nevertheless, second-stage juveniles of both these root-knot nematodes showed a similar pattern of distribution inside the roots, preferring to accumulate at the root tips of rice or in the vascular cylinder and cortical region of tomato.


2006 ◽  
Vol 19 (4) ◽  
pp. 383-388 ◽  
Author(s):  
Fiona L. Goggin ◽  
Lingling Jia ◽  
Gowri Shah ◽  
Stephanie Hebert ◽  
Valerie M. Williamson ◽  
...  

The Mi-1.2 gene in tomato (Solanum lycopersicum) is a member of the nucleotide-binding leucine-rich repeat (NB-LRR) class of plant resistance genes, and confers resistance against root-knot nematodes (Meloidogyne spp.), the potato aphid (Macrosiphum euphorbiae), and the sweet potato whitefly (Bemisia tabaci). Mi-1.2 mediates a rapid local defensive response at the site of infection, although the signaling and defensive pathways required for resistance are largely unknown. In this study, eggplant (S. melongena) was transformed with Mi-1.2 to determine whether this gene can function in a genetic background other than tomato. Eggplants that carried Mi-1.2 displayed resistance to the root-knot nematode Meloidogyne javanica but were fully susceptible to the potato aphid, whereas a susceptible tomato line transformed with the same transgene was resistant to nematodes and aphids. This study shows that Mi-1.2 can confer nematode resistance in another Solanaceous species. It also indicates that the requirements for Mi-mediated aphid and nematode resistance differ. Potentially, aphid resistance requires additional genes that are not conserved between tomato and eggplant.


1982 ◽  
Vol 22 (117) ◽  
pp. 357 ◽  
Author(s):  
GR Stirling ◽  
MF Wachtel

The performance of 15 potentially useful nematode-resistant tomato varieties (Ace Hy, Better Boy, Bigset, Bonus, Calmart, Magnifico, Monte Carlo, Patriot, Red Supreme, Rich Reward, Surprise, Terrific, VFN Bush, VFN 8 and Vine Ripe) was assessed in field trials at Loveday and Loxton, South Australia. All varieties showed some nematode resistance when grown in sites heavily infested with root-knot nematodes (Meloidogyne javanica) and most produced yields which were not significantly less than the commonly used susceptible varieties (Burnley Gem, Floradade, Grosse Lisse and Q3) grown in soil treated with nematicides. However, the nematode-resistant varieties were of limited value commercially because the fruit was either susceptible to cracking or too soft to be transported long distances. In glasshouse tests, biotypes of root-knot nematode capable of attacking resistant varieties were not observed. All resistant varieties exhibited resistance against populations of M. javanica from grape, peach, sweet corn, tomato (variety Floradade), tomato (variety VFN Bush), and against field populations of Meloidogyne from both resistant and susceptible tomato varieties. These results suggest that agronomically acceptable nematode-resistant varieties would be useful in management programs to control root-knot nematodes in the Murray Valley.


1999 ◽  
Vol 89 (12) ◽  
pp. 1138-1143 ◽  
Author(s):  
Yuji Oka ◽  
Yigal Cohen ◽  
Yitzhak Spiegel

Chemical inducers of pathogenesis-related proteins and plant resistance were applied to tomato plants, with the aim of inducing resistance to the root-knot nematode Meloidogyne javanica. Relative to control plants, foliar spray and soil-drenching with dl-β-amino-n-butyric acid (BABA) reduced root-galling 7 days after inoculation, as well as the number of eggs 30 days after inoculation. Other chemicals (α- and γ-amino-n-butyric acid, jasmonic acid, methyl jasmonate, and salicylic acid) were either phytotoxic to tomato plants or did not improve control of root-knot nematodes. Fewer second-stage juveniles invaded BABA-treated tomato roots, and root-galling indices were lower than in control tomato plants. Resistance phenomena in seedlings lasted at least 5 days after spraying with BABA. Nematodes invading the roots of BABA-treated seedlings induced small, vacuolate giant cells. Postinfection treatment of tomato plants with BABA inhibited nematode development. It is speculated that after BABA application tomato roots become less attractive to root-knot nematodes, physically harder to invade, or some substance(s) inhibiting nematode or nematode feeding-site development is produced in roots.


1991 ◽  
Vol 81 (5) ◽  
pp. 661-667 ◽  
Author(s):  
R. Klein-Lankhorst ◽  
P. Rietveld ◽  
B. Machiels ◽  
R. Verkerk ◽  
R. Weide ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document