scholarly journals First Report of Brown Rot and Wilt of Fennel Caused by Phytophthora megasperma in Italy

Plant Disease ◽  
2006 ◽  
Vol 90 (1) ◽  
pp. 110-110 ◽  
Author(s):  
S. O. Cacciola ◽  
A. Pane ◽  
D. E. L. Cooke ◽  
F. Raudino ◽  
G. Magnano di San Lio

Fennel (Foeniculum vulgare Mill. var. azoricum (Mill.) Thell.) in the Apiaceae family is native to southern Europe and southwestern Asia. It is an economically important crop in Italy that produces approximately 85% of all fennel worldwide. The main producing regions are Apulia, Campania, Latium, and Calabria. During the late winter of 2004 in the Crotone Province of the Calabria Region, following heavy rains, patches of fennel plants with symptoms of brown, soft rot of the bulb-like structure formed by the thickened leaf bases, development of yellow leaves, stunting, and wilting of the entire plant were observed in fields. A homothallic Phytophthora sp. was isolated consistently from the brownish tissues of the stout stems and leaf bases of symptomatic plants using a selective medium (3). Pure cultures were obtained by single hyphal tip transfers. On potato dextrose agar (PDA), the diameter of oospores varied from 28 to 42 μm (mean = 36.3 ± 0.4). Antheridia were primarily paragynous. Sporangia were not produced on solid media but were formed in sterile soil extract solution. They were nonpapillate, noncaducous, ovoid and obpyriform (25 to 45 × 35 to 60 μm), and internally proliferating. Optimum and maximum temperatures for radial growth of the colonies on PDA were 25 and 30°C, respectively. At 25°C, radial growth rate was approximately 6 mm per day. On the basis of morphological and cultural characteristics, the isolates were identified as Phytophthora megasperma Drechsler. Electrophoretic patterns of mycelial proteins and four isozymes (acid and alkaline phosphatase, esterase, and malate dehydrogenase) on polyacrylamide gels of the fennel isolates were identical to those of reference isolates of P. megasperma of the BHR (broad host range) group included in P. gonapodyides-P. megasperma Clade 6 (1,3), but distinct from those of the isolates of other nonpapillate species included in Waterhouse's taxonomic group VI. Internal transcribed spacer (ITS) regions of rDNA sequences (2) confirmed that fennel isolates belonged to P. megasperma BHR group. Pathogenicity of a fennel isolate from Calabria (IMI 391711) was confirmed by pouring a zoospore suspension at 2 × 104 zoospores per ml on the soil of 10 3-month-old potted fennel plants. The soil of the inoculated and 10 control seedlings was flooded for 24 h. After 10 days, stems and leaf bases of the seedlings showed a brown rot. Chlorosis and wilting of all seedlings developed after 20 days. Controls inoculated with water did not develop any symptoms. The pathogen was reisolated from typical brown rot and tests were repeated with similar results. To our knowledge, this is the first report of P. megasperma causing disease on fennel. References: (1) S. O. Cacciola et al. For. Snow. Landsc. Res. 76:387, 2001. (2) D. C. Erwin and O. K. Ribeiro. Phytophthora Diseases Worldwide. The American Phytopathological Society, St. Paul, MN, 1996. (3) H. Masago et al. Phytopathology, 67:425, 1977.

Plant Disease ◽  
2015 ◽  
Vol 99 (1) ◽  
pp. 155-155 ◽  
Author(s):  
L. Luongo ◽  
A. Haegi ◽  
M. Galli ◽  
S. Berti ◽  
S. Vitale ◽  
...  

European hackberry (Celtis australis L.) is a popular shade tree mainly planted in southern Europe and known to be tolerant to dry and poor soils. In early autumn 2013, hackberry plants grown in soil in a commercial nursery located in the floodplain in Umbria region showed symptoms of wilting, dieback, and death. Up to 100% of the canopy was affected, and over 60% of the plants were symptomatic or dead. A Phytophthora species was consistently isolated from symptomatic 6-year-old plants by plating small pieces of collar and root tissues, cut from the margin of dark-brown necrotic lesions, onto P5ARPH selective medium (4). Pure cultures were obtained by single-hyphal transfers on potato dextrose agar (PDA). Sporangia, produced on pepper seeds in soil extract solution (3), were nonpapillate and noncaducous, measuring 34.0 to 85.0 × 22.0 to 50.0 μm. Oospores had an average diameter of 44 μm with mostly paragynous antheridia. On the basis of morphological features, the isolates were identified as P. megasperma Drech. (2). The identity was confirmed by sequencing the cytochrome c oxidase subunit II (Cox II) (5), which gave 100% identity with P. megasperma sequences available in GenBank (GU222070), and by sequencing the internal transcribed spacer (ITS) using the universal primers ITS4 and ITS6, which gave 99% identity with the AF266794 sequence from Cooke et al. (1). The sequences of one isolate (AB239) were deposited in the European Nucleotide Archive (ENA) with accession numbers HG973451 and HG973450 for Cox II and ITS, respectively. Pathogenicity tests were conducted in the greenhouse with isolate AB239 on eight 2-year-old potted European hackberry plants. Mycelial plugs (5 mm diameter) cut from the margins of actively growing 8-day-old cultures on PDA were inserted through the epidermis to the phloem at the collar level. Two plants were used as controls and treated as described above except that sterile PDA plugs replaced the inoculum. Inoculated plants were kept for 4 weeks in a greenhouse at 24 ± 2°C. During that period, inoculated plants showed wilting symptoms similar to those observed in the field. Lesions were evident at all the inoculation points progressing downward to the roots. Colonies of Phytophthora were isolated from the margins of lesions and identified as P. megasperma, thus fulfilling Koch's postulates. Controls remained symptomless. P. megasperma taxonomy is rather complex since it embraces different subgroups, including host specialized forms (formae speciales), some of which are recognized as biological species. Based on morphological and molecular data presented here, the Phytophthora isolates from hackberry belong to P. megasperma sensu stricto, which is included in the “pathogenic to a broad range of hosts” (BHR) group (1). This pathogen is rather polyphagous, attacking mainly fruit and ornamental woody plants, commonly Prunus spp., Malus spp., and Actinidia deliciosa. Like other homothallic Phytophthora species, it is particularly dangerous due to its abundant production of thick-walled resting oospores that enable long-term survival in the soil. To our knowledge this is the first report of P. megasperma sensu stricto (1) on C. australis and its family Ulmaceae/Cannabaceae. References: (1) D. E. L. Cooke et al. Fungal Genet. Biol. 30:17, 2000. (2) D. C. Erwin and O. K. Ribeiro, American Phytopathological Society, St. Paul, MN, 1996. (3) E. Ilieva et al. Eur. J. Plant Path. 101:623, 1995. (4) S. N. Jeffers and S. B. Martin. Plant Dis. 70:1038, 1986. (5) F. N. Martin and P. W. Tooley. Mycologia 95:269, 2003.


Plant Disease ◽  
2010 ◽  
Vol 94 (7) ◽  
pp. 917-917
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Edgeworthia papyrifera, Oriental paperbush, is a deciduous flowering shrub becoming increasingly popular because of its clove-like perfumed flowers appearing in late winter-early spring. During August of 2009 in a commercial nursery close to Maggiore Lake (Verbano-Cusio-Ossola Province) in northwest Italy, 2-year-old plants of E. papyrifera showed extensive chlorosis and root rot. Twigs wilted and died, dropping leaves in some cases. Most frequently, wilted leaves persisted on stems. At the soil level, dark brown-to-black water-soaked lesions formed and coalesced, girdling the stem. All of the crown and root system was affected. Infected plants died within 14 days of the appearance of symptoms. Disease was widespread and severe, affecting 90 of the 100 plants present. After disinfestation for 1 min in a solution containing 1% NaOCl, rotting root and collar pieces of E. papyrifera consistently produced a Phytophthora-like organism when plated on a medium selective for oomycetes (3). The pathogen was identified morphologically as Phytophthora nicotianae (= P. parasitica) (2). On V8 agar, coenocytic hyphae, 4 to 8 μm in diameter, formed fluffy, aerial colonies and spherical, intercalary chlamydospores, 21.0 to 36.5 (average 26.7) μm in diameter. Colonies grew well at 35°C and stopped growing at 40°C. Sporangia were produced by growing a pure hyphal-tip culture in a diluted, sterilized soil-extract. Sporangia were borne singly, laterally attached to the sporangiophore, were noncaducous, spherical to ovoid, papillate, and measured 28.6 to 55.2 × 22.4 to 45.1 (average 42.4 × 34.6) μm, length/breadth ratio (1.1:1)-1.2:1-(1.3:1). Papillae measured 3.1 to 7.6 (average 4.6) μm. The internal transcribed spacer (ITS) region of rDNA of a single isolate was amplified with primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 839-bp segment showed 99% homology with the sequence of P. nicotianae (No. AJ854296). The sequence has been assigned the GenBank No. GU353341. Pathogenicity of isolates Edg.1 and Edg.2 obtained, respectively, from the root and collar of an infected plant was confirmed by inoculating 1-year-old plants of E. papyrifera. Both strains were grown for 15 days on a mixture of 70:30 wheat/hemp kernels, and 4 g/liter of the inoculum was mixed into a substrate containing sphagnum peat moss/pumice/pine bark/clay (50:20:20:10 vol/vol). One plant per 3-liter pot was transplanted into the substrate and constituted the experimental unit. Five plants were used for each test strain and noninoculated control treatment; the trial was repeated once. All plants were kept in a greenhouse at 25 to 28°C. Plants inoculated with Edg.1 and Edg.2 developed chlorosis and root rot 18 and 14 days after the inoculation, respectively, and wilt rapidly followed. Control plants remained symptomless. P. nicotianae was consistently reisolated from inoculated plants. To our knowledge, this is the first report of P. nicotianae on E. papyrifera in Italy as well as worldwide. The current economic importance of the disease is minor due to the limited number of farms that grow this crop in Italy, although spread could increase as the popularity of plantings expand. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997 (2) D. C. Erwin and O. K. Ribeiro. Phytophthora Diseases Worldwide. The American Phtytopathological Society, St Paul, MN, 1996. (3) H. Masago et al. Phytopathology 67:425, 1977.


Plant Disease ◽  
2001 ◽  
Vol 85 (1) ◽  
pp. 96-96 ◽  
Author(s):  
S. O. Cacciola ◽  
G. E. Agosteo ◽  
G. Magnano di San Lio

Olive (Olea europea L.) is grown on about 154,000 ha in Sicily (southern Italy). In the summer of 1999, a few 3-year-old olive trees with decline symptoms were observed in a recently planted commercial orchard in the Enna province (Sicily). The trees were propagated on wild olive (O. europea L. var. sylvestris Brot.) rootstock. Aerial symptoms, consisting of leaf chlorosis, wilting, defoliation, and twig dieback followed in most cases by plant death, were associated with root rot and basal stem cankers. A Phytophthora sp. was consistently isolated from rotted rootlets and trunk cankers using the BNPRAH (benomyl, nystatin, pentachloronitrobenzene, rifampicin, ampicillin, and hymexazol) selective medium. Pure cultures were obtained by single-hypha transfers. The species isolated from symptomatic olive trees was identified as P. megasperma Drechsler on the basis of morphological and cultural characteristics. All isolates were homothallic, with paragynous antheridia. The diameter of oospores varied from 28 to 42 μm (mean ± SE = 36.3 ± 0.4) when they were produced on potato-dextrose agar (PDA) and from 30 to 43 μm (mean ± SE = 37.8 ± 0.4) when they were produced in saline solution. Sporangia were non-papillate. Optimum and maximum temperatures for radial growth of the colonies on PDA were 25 and 30°C, respectively. At 25°C, radial growth rate was about 6 mm per day. The identification was confirmed by the electrophoresis of mycelial proteins on a polyacrylamide slab gel. The electrophoretic banding patterns of total soluble proteins and three isozymes (esterase, fumarase, and malate dehydrogenase) of the isolate from olive were identical to those of two isolates of P. megasperma obtained from cherry and from carrot in Italy and characterized previously (1). Conversely, they were clearly distinct from the electrophoretic patterns of four isolates of P. megasperma var. sojae Hildebr. from soybean (= P. sojae Kauf. & Ger.), from those of three isolates from asparagus tentatively identified as P. megasperma sensu lato (1) and from those of reference isolates of various species producing non-papillate sporangia, including P. cambivora (Petri) Buisman, P. cinnamomi Rands, P. cryptogea Pethybr. & Laff., P. drechsleri Tucker, and P. erythroseptica Pethybr. Pathogenicity of the isolate from olive was tested in the greenhouse at 18 to 25°C using 18-month-old rooted cuttings of olive cv. Biancolilla. Cuttings were inoculated on the lower stem by inserting a 3-mm plug taken from actively growing colonies on PDA into an incision made with a sterile scalpel. The wound was sealed with waterproof tape. Agar plugs with no mycelium were placed into the stem of cuttings used as a control. The bark was stripped and lesion areas were traced and measured 60 days after inoculation. The isolate from olive produced a brown necrotic lesion (mean size = 500 mm2) around the inoculation wound and was reisolated from the lesion. Conversely, the wound healed up on control plants. P. megasperma has previously been recognized as a pathogen of olive in Greece and Spain (3). However, this is the first report of P. megasperma causing root and collar rot of olive in Italy. References: (1) S. O. Cacciola et al. Inf. Fitopatol. 46:33, 1996. (2) D. C. Erwin and O. K. Ribeiro, 1996. Phytophthora Diseases Worldwide. The American Phytopathological Society, St. Paul, MN. (3) M. E. Sánchez-Hernádez et al. Plant Dis. 81:1216, 1997.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 1011-1011 ◽  
Author(s):  
Y. Li ◽  
L. G. Mao ◽  
D. D. Yan ◽  
X. M. Liu ◽  
T. T. Ma ◽  
...  

Ginger (Zingiber officinale Roscoe) is an important commercial crop planted on more than 13,000 ha annually in Anqiu city, Shandong Province, China. From 2010 to 2011, the incidence of Pythium soft rot disease on cv. Laiwu Big Ginger reached 40 to 75% in Anqiu and yield losses of up to 60% were observed. The disease symptoms included brown spots on ginger rhizomes followed by soft rot, stems and leaves above ground becoming withered and yellow, and water soaking on the collar region. The soft rot did not produce offensive odors, which is different from bacterial rots (2). Forty symptomatic rhizomes were sampled from eight farms. Martin's method (1) was used to isolate the pathogen. Ten pieces from each rhizome were washed with sterile distilled water for 30 s and plated on Martin's selective medium at 26°C in a chamber without light. Colonies grew with cottony aerial mycelium. Main hyphae were 5.7 to 9.6 μm wide. Globose sporangia consisting of terminal complexes of swollen hyphal branches were 11.4 to 18.3 μm wide. The average diameter of zoospores was 9.2 μm. The oogonia were globose and smooth, with a diameter of 21 to 33 μm. The sequences of the rRNA gene internal transcribed spacer (ITS) regions 1 and 2 and the 5.8S gene of five isolates were amplified using primers ITS1 and ITS4 (4), and the nucleotide sequence was the same as isolate No. 2, which was deposited in GenBank (Accession No. KC594034). A BLAST search showed 99% identity with Pythium aphanidermatum strain 11-R-8 (Accession No. JQ898455.1). Pathogenicity tests of five isolates were carried out in a greenhouse. Sixty plants (cv. Laiwu Big Ginger) were grown for 30 days in plastic pots (diameter 20 cm) in sandy soil (pH 5.48) and inoculated. Ten plants were used as untreated controls. Five isolates were grown on Martin's liquid medium for 72 h and the spores were harvested in sterile distilled water. Aqueous spore suspensions of the five isolates were adjusted with deionized water to 1 × 108 CFU/ml and injected with a syringe into the soil around the rhizome of the plants. Plants were then placed in the greenhouse at 24 to 26°C and assessed for rhizome rot on the 14th day after inoculation. The inoculated isolates were recovered from the diseased rhizomes, confirming their pathogenicity. To our knowledge, this is the first report of ginger Pythium soft rot caused by P. aphanidermatum in China. Ginger Pythium soft rot caused by P. myriotylum is reported in Taiwan (3). References: (1) F. N. Martin. Page 39 in: The Genus Pythium. American Phytopathological Society, St. Paul, MN, 1992. (2) E. E. Trujillo. Diseases of Ginger (Zingiber officinale) in Hawaii, Circular 62, Hawaii Agricultural Experiment Station, University of Hawaii, December 1964. (3) P. H. Wang. Lett. Appl. Microbiol. 36:116, 2003. (4) T. J. White. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2012 ◽  
Vol 96 (11) ◽  
pp. 1695-1695 ◽  
Author(s):  
A. Belisario ◽  
L. Luongo ◽  
M. Galli ◽  
S. Vitale

Common walnut (Juglans regia L.) is an important nut crop in Italy, which is the fifth largest producer of walnut in Europe. In recent years, walnut decline and subsequent death has increased in many Italian commercial orchards. In the summer of 2010, several declining trees were present in waterlogged area of a walnut orchard located in the Veneto region. Symptoms included sparse foliage, wilting, and shoot and branch dieback. By the next year, a larger area of about 1 ha with 20% of dead trees was present, and soil/root samples were subjected to azalea leaf baiting and successively cultured on PARBH medium (3). Isolates were identified as Phytophthora megasperma based on morphological characteristics (2) and DNA sequence analysis. Sporangia were 35.0 to 62.0 × 12.0 to 30.0 μm, nonpapillate, and noncaducous when produced in soil extract solution. Oogonia had an average diameter of 36 μm with mostly paragynous antheridia. Identity was confirmed by sequence comparison in NCBI database with 99% and 100% identity for internal transcribed spacer (ITS) and mitochondrial partial COI (4) for cytochrome oxidase subunit 1, respectively. The sequences of the isolate AB199 were deposited in GenBank with the accession nos. HE805270 and HE805269 for ITS and COI, respectively. Pathogenicity tests were conducted in the greenhouse on six 1-year-old walnut shoots with two inoculation points each. Mycelial plugs cut from the margins of actively growing 8-day-old cultures on PDA were inserted through the epidermis to the phloem. Controls were treated as described above except for inoculation with sterile PDA plugs. After inoculation, shoots were incubated in test tubes with sterile water for 1 week in the dark at 22 ± 2°C. Lesions were evident at the inoculation points. P. megasperma was consistently reisolated from the margin of symptomatic tissues. Controls remained symptomless. P. megasperma is a polyphagous, ubiquitarious Phytophthora species that attacks many crops and fruit species including walnut. Although several other species of Phytophthora have been reported from Italy (1), to the best of our knowledge, this is the first report of Phytophthora decline on common walnut in Italy caused by P. megasperma. References: (1) A. Belisario et al. Acta Hort. 705:401, 2006. (2) D. C. Erwin and O. K. Ribeiro. Phytophthora Diseases Worldwide. The American Phytopathological Society, St. Paul, MN, 1996. (3) G. C. Papavisas et al. Phytopathology 71:129, 1981. (4) G. P. Robideau et al. Mol. Ecol. Resour. 11:1002, 2011.


Plant Disease ◽  
2007 ◽  
Vol 91 (8) ◽  
pp. 1059-1059
Author(s):  
A. Pane ◽  
C. Allatta ◽  
G. Sammarco ◽  
S. O. Cacciola

Canary Island date palm (Phoenix canariensis hort. ex Chabaud) is planted as an ornamental in Mediterranean climatic regions of the world. From 2004 to 2006, withering of the spear leaf was observed on screenhouse-grown potted plants of this palm in Sicily (Italy). The first symptom was a dark brown rot that extended from the petiole base of the spear to the adjacent youngest leaves and killed the bud. Dissection of plants revealed a foul-smelling internal rot. After the bud died, external older leaves remained green for months. As much as 10% of plants in a single nursery were affected. A Phytophthora species was consistently isolated from symptomatic plants on BNPRAH selective medium (4). Single zoospore isolates were obtained from the colonies. The species isolated was identified as Phytophthora palmivora (E. J. Butler) E. J. Butler on the basis of morphological and cultural characteristics (3). On V8 juice agar, the isolates produced elliptical to ovoid, papillate sporangia (33 to 77 × 22 to 38 μm) with a mean length/breadth ratio of 1.8. Sporangia were caducous with a short pedicel (mean pedicel length = 5 μm) and had a conspicuous basal plug. All isolates were heterothallic and produced amphigynous antheridia, oogonia, and oospores when paired with reference isolates of P. nicotianae and P. palmivora of the A2 mating type. The oogonium wall was smooth. Identification was confirmed by electrophoresis of mycelial proteins in polyacrylamide slab gels (1). The electrophoretic patterns of total mycelial proteins and four isozymes (alkaline phosphatase, esterase, glucose-6-phosphate dehydrogenase, and malate dehydrogenase of the isolates) from Phoenix canariensis were identical to those of P. palmivora reference isolates, including four Italian ones, two from pittosporum and olive, respectively, and two (IMI 390579 and 390580) from Grevillea spp. Phoenix canariensis isolates were clearly distinct from those of other heterothallic papillate species including P. capsici, P. citrophthora, P. katsurae, P. nicotianae, and P. tropicalis. Pathogenicity of one isolate from Phoenix canariensis (IMI 395345) was tested on 10 2-year-old potted Canary Island date palm plants. An aqueous 105 zoospores per ml suspension (200 μl) was pipetted onto unwounded petiole bases of the three youngest central leaves of each plant. Sterile water was pipetted onto 10 control plants. All plants were incubated in 100% humidity at 24°C for 48 h and maintained in a greenhouse at 20 to 28°C. Within 3 weeks after inoculation, inoculated plants developed symptoms identical to those observed on plants with natural infections. Control plants remained healthy. P. palmivora was reisolated from symptomatic plants. Phytophthora bud rot is a common palm disease worldwide and Phoenix canariensis is reported as a host (2). To our knowledge, this is the first report of Phytophthora bud rot on Phoenix canariensis in Italy. References: (1) S. O. Cacciola et al. EPPO Bull. 20:47, 1990. (2) M. L. Elliot et al., eds. Compendium of Ornamental Palm Diseases and Disorders. The American Phytopathological Society, St. Paul, MN, 2004. (3) D. C. Erwin and O. K. Ribeiro. Phytophthora Diseases Worldwide. The American Phytopathological Society, St. Paul, MN, 1996. (4) H. Masago et al. Phytopathology, 67:425, 1977.


Plant Disease ◽  
2002 ◽  
Vol 86 (4) ◽  
pp. 441-441 ◽  
Author(s):  
A. K. Wood ◽  
F. H. Tainter

In May 2001, bleeding cankers were observed on several laurel oak (Quercus laurifolia) trees in central Florida. Affected trees had chlorotic leaves, sparse canopies, and little new growth. Multiple cankers were present on the trunk and extended from the soil line up to approximately 5 m. Each canker had a reddish to dark brown or black exudate. From two of the infected trees, tissue samples were taken from beneath the bark around the edge of an actively growing lesion and transferred directly to Phytophthora-selective medium (1), and three soil cores (2 cm in diameter, 20 cm deep) were collected from the base of each tree. A baiting bioassay (with camellia leaf disks and shore juniper and eastern hemlock needles as baits) was used to assay fresh composite soil samples for Phytophthora species (1). P. cinnamomi was recovered from both tissue and soil samples (2). Mycelia were coralloid with abundant hyphal swellings. Sporangia were produced in 1.5% nonsterilized soil extract solution. Sporangia were ovoid to ellipsoid in shape and nonpapillate. Average sporangium size was 72 × 45 μm (length × width). To our knowledge, this is the first report of P. cinnamomi on laurel oak trees. References: (1) A. J. Ferguson and S. N. Jeffers. Plant Dis. 83:1129, 1999. (2) G. M. Waterhouse. Key to the species of Phytophthora de Bary. Mycol. Pap. 92. CMI. Kew, UK, 1963.


Plant Disease ◽  
2013 ◽  
Vol 97 (10) ◽  
pp. 1385-1385 ◽  
Author(s):  
L. Luongo ◽  
M. Galli ◽  
S. Vitale ◽  
A. Haegi ◽  
A. Belisario

The genus Rhododendron comprises over 1,000 species, which represent many important ornamental shrubs. Microbial isolations were made from Rhododendron catawbiense plants showing symptoms of wilt, dieback, and death of shoots obtained from two nurseries in the Latium region in the late summer of 2012. A Phytophthora species was consistently recovered by plating small pieces of stem and collar tissues, cut from the margin of lesions, on P5ARPH selective medium. Pure cultures were obtained by single-hyphal transfers and they grew in a rosaceous pattern on potato dextrose agar (PDA) at an optimum temperature of 28 to 30°C. Sporangia formation was induced on pepper seeds (3). Sporangia were ellipsoid, fusiform or obpyriform, papillate, occasionally bipapillate, caducous, with a long pedicel (up to 100 μm), and mean dimensions of 45 × 25 μm with a mean length/width ratio of 1.8. Chlamydospores ranged from 25 to 32 μm in diameter. Isolates were considered heterothallic because they did not produce gametangia in vitro or in planta. On the basis of morphological features, the isolates were identified as Phytophthora tropicalis Aragaki & Uchida. Identity was confirmed by sequence comparison in GenBank with 99% homology both for internal transcribed spacer (ITS) and mitochondrial partial COI for cytochrome oxidase subunit 1. The sequences of two isolates AB211 and AB212 were deposited in the European Nucleotide Archive (ENA) with accession nos. HF937577 and HF937578 for ITS, and HF937579 and HF937580 for COI, respectively. Pathogenicity tests were conducted in the greenhouse on a total of six 1-year-old shoots cut from R. catawbiense plants with two inoculation points each. Mycelial plugs cut from the margins of actively growing 8-day-old cultures on PDA were inserted through the epidermis to the phloem. Controls were treated as described above except for inoculation with sterile PDA plugs. Inoculated shoots were incubated in test tubes with sterile water for 1 week in the dark at 26 ± 2°C. Lesions were evident at the inoculation points. P. tropicalis was consistently reisolated from the margin of symptomatic tissues. Control shoots remained symptomless. In Italy, P. tropicalis has been reported on several ornamental species (1) and on apricot trees (4) indicating a broad host range. On the same host it has been reported in Virginia, United States (2). To the best of our knowledge, this is the first report of Phytophthora damage on Rhododendron caused by P. tropicalis in Italy. References: (1) S. O. Cacciola et al. Plant Dis. 90: 680, 2006. (2) C. X. Hong et al. Plant Dis. 90: 525, 2006. (3) E. Ilieva et al. Eur. J. Plant Path. 101: 623, 1995. (4) A. Pane et al. Plant Dis. 93: 844, 2009.


Plant Disease ◽  
2014 ◽  
Vol 98 (1) ◽  
pp. 160-160 ◽  
Author(s):  
B. A. Latorre ◽  
G. A. Díaz ◽  
A. L. Valencia ◽  
P. Naranjo ◽  
E. E. Ferrada ◽  
...  

In autumn 2013, fruit of Japanese plum (Prunus salicina) cvs. Angelino and Black Kat developed an unusual brown and soft rot after 2 months in cold storage (0°C) on nearly 1% of the fruit. Fruit showed small, circular, light brown spots that eventually destroyed the entire fruit. Small sporodochia appeared on the fruit surface. Fruit was harvested from orchards located near San Francisco de Mostazal (33°59′ S, 70°41′ W), Chile. Small pieces of diseased tissue were selected from margins of lesions of surface disinfected (96% ethanol) fruit (n = 7) and placed on acidified potato dextrose agar (PDA) plates for 5 days at 20°C. Light brown colonies with even margins and concentric rings of spores were obtained. The conidia of five isolates were one-celled, hyaline, lemon-shaped, (min. 10.7) 14.9 ± 1.5 (max. 18.6) × (min. 8.1) 9.4 ± 0.8 (max. 10.8) μm (n = 30), and borne in branched monilioid chains. This fungus was identified as Monilinia fructicola (G. Winter) Honey (1). Identification was confirmed by amplifying and sequencing the ribosomal ITS1-5.8S-ITS2 region using ITS1 and ITS4 primers (3). BLAST analysis of Chilean plum isolates (GenBank Accession Nos. KF148610 and KF148611) were 99 to 100% identical to isolates of M. fructicola originating from the United States (DQ314727 and HQ846966, respectively) and 100% identical to the first Chilean isolate (JN001480) found in nectarines originating from California at the supermarkets in Santiago in June 2009. Koch's postulates were fulfilled by reproducing brown rot symptoms on mature wounded Japanese plums cv. Angelino (n = 8) inoculated with 10 μl of a conidial suspension (105 conidia/ml) or with a mycelium plug (5-mm diameter). After 2 days in humid chambers (>80% relative humidity) at 25°C, all inoculated fruit developed brown rot symptoms with necrotic lesion means of 15.8 and 21.5 mm in diameter in fruit inoculated with conidia and mycelium, respectively. Non-inoculated control fruit remained healthy. Re-isolations were performed on PDA and the presence of M. fructicola was morphologically confirmed in 100% of the symptomatic fruits. To our knowledge, this is the first report demonstrating the presence of M. fructicola causing brown rot in stored Japanese plums in Chile after its first interception in 2009 in Chile, suggesting that this pathogen has been established in the field. Currently, M. fructicola is a quarantine organism under official control, restricted to Prunus orchards between Santiago and Nancagua in central Chile (2). References: (1) EPPO. EPPO Bull. 39:337, 2009. (2) Servicio Agrícola y Ganadero, SAG, Ministerio de Agricultura, Gobierno de Chile. www.sag.cl , accessed 15 November 2013. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, NY, 1990.


Plant Disease ◽  
2010 ◽  
Vol 94 (6) ◽  
pp. 782-782 ◽  
Author(s):  
X. M. Yang ◽  
J. H. Wang ◽  
S. P. Qu ◽  
L. H. Wang ◽  
L. C. Peng

Lily (Lilium spp.) is an economically important cut flower in China. In August 2009, 30 to 40% of plants of lily cv. Siberia in a greenhouse for cut flower production in Yunnan, China were severely diseased. Infected plants developed water-soaked lesions and soft rot on the base of stems and leaves near the soil surface. As the disease progressed, stems bent and plants collapsed. Soft rot symptoms were observed on some bulbs and roots of severely diseased plants. Small, diseased tissue fragments (approximately 3 mm) were surface disinfected with 0.5% NaOCl and then plated to Phytophthora selective medium (10% V8 juice agar) (4). Inoculated dishes were incubated at 25°C in the dark. After 5 days, white colonies with abundant aerial mycelia developed from all plated tissue samples. The fungus had aseptate hyphae. Sporangia were papillate, both caducous and noncaducous, and the shape ranged from ovoid to spherical. The dimensions of sporangia were 30 to 62 × 21 to 46 μm. On the basis of morphological features, isolates were identified as Phytophthora nicotianae Breda de Haan. The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS1/ITS4 and sequenced. BLAST analysis of the 835-bp fragment showed a 99% homology with the sequence of P. nicotianae AY833527. The nucleotide sequence has been assigned GenBank No. GU299778. PCR amplification of genomic DNAs using the P. nicotianae-specific primer pair ITS3-PNIC1 generated a 455-bp sequence (3). The result further confirmed the identity of P. nicotianae. Pathogenicity tests were conducted in the greenhouse on lily cv. Siberia grown in pots. Ten 3-month-old plantlets were inoculated by watering the wounded stem bases and soil surface with 30 ml of zoospore suspensions (105 spores per ml). Five uninoculated plantlets were used as controls. All plantlets were covered with plastic bags and incubated at room temperature (22 to 26°C) for 48 h. Inoculated plants developed initial symptoms of slight chlorosis and wilting of lower leaves. Within a 3-week period, all plants died due to soft rot of stem bases and leaves. The pathogen was reisolated from inoculated plants but not from control plants that were symptomless. P. nicotianae has been reported as the causal agent of Phytophthora blight on lily in Korea, Japan, and Hungary (1,2). To our knowledge, this is the first report of Phytophthora blight of lily in China. References: (1) J. Bakonyi et al. Plant Pathol. 50:795, 2001. (2) H. J. Jee and W. G. Kim. Plant Pathol. J. 14:452, 1998. (3) P. W. Tooley et al. Appl. Environ. Microbiol. 63:1467, 1997. (4) X. B. Zheng. Phytophthora and Its Research Technology. Beijing. China Agriculture Press, Beijing, 1997.


Sign in / Sign up

Export Citation Format

Share Document