scholarly journals First Report of Anthracnose Fruit Rot of Strawberry Caused by Colletotrichum acutatum in Montenegro

Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 1066-1066 ◽  
Author(s):  
J. Latinovic ◽  
N. Latinovic ◽  
J. Tiodorovic ◽  
A. Odalovic

Strawberries (Fragaria × ananassa) in Montenegro have become an increasingly important economic crop in recent years. During May 2011, severe fruit damage in strawberry cv. Clery was observed in two fields in the Podgorica region. Fruit symptoms were typical for strawberry anthracnose: sunken, dark brown to black circular lesions appeared on maturing fruits. However, no stem, crown, or foliar symptoms were observed. Under wet conditions, orange masses of conidia were produced in acervuli in the center of lesions. Conidia were hyaline, aseptate, cylindrical, with pointed ends, measuring 9.8 to 17.2 (mean 14.3) × 2.5 to 6.1 (mean 4.4) μm. Colonies on potato dextrose agar (PDA) were initially white, then turned gray as conidia formed in orange to salmon pink masses around the center of the culture. Setae or an ascigerous stage were never observed in culture or on the host. Koch's postulates were fulfilled by inoculating ripe and unripe asymptomatic fruits (20 of each, removed from strawberry plants cv. Clery) with the isolated fungus. Fruits were sprayinoculated (106 conidia/ml). An equal number of noninoculated fruits were used as a control. After incubation time of 2 to 3 days at 25°C in a moist chamber, symptoms appeared on inoculated ripe fruits. On unripe fruits, the lesions developed only 3 to 4 days after the inoculation. No symptoms were found on control fruits. The fungus was reisolated from fruits, after which typical morphological characteristics developed in culture as described above. On the basis of the symptoms, the morphological and cultural characteristics of the fungus, and the pathogenicity test, the disease was identified as strawberry anthracnose caused by Colletotrichum acutatum, which is in accordance with previous reports (1,2,3,4). The isolate was submitted to the Centraalbureau voor Schimmelcultures in the Netherlands (CBS 131813). The internal transcribed spacer (ITS) region of the fungal DNA was amplified with ITS1F and ITS4 primers, sequenced, and submitted to NCBI GenBank (Accession No. JQ424934). BLASTn searches of GenBank using the ITS sequence revealed 99% similarity with database sequences of C. acutatum. Since the pathogen was found in the main Montenegrin strawberry production area, it poses a threat to strawberry production in Montenegro. To our knowledge, this is the first report of anthracnose fruit rot of strawberry in Montenegro. References: (1) S. G. Bobev et al. Plant Dis. 86:1178, 2002. (2) F. M. Dai et al. Plant Dis. 90:1460, 2006. (3) U. Nilsson et al. Plant Dis. 89:1242, 2005. (4) A. Stensvand et al. Plant Dis. 85:558, 2001.

Plant Disease ◽  
2008 ◽  
Vol 92 (8) ◽  
pp. 1247-1247 ◽  
Author(s):  
M. H. Nam ◽  
T. I. Kim ◽  
M. L. Gleason ◽  
J. Y. Song ◽  
H. G. Kim

Symptoms typical of anthracnose fruit rot; sunken, dark brown lesions on maturing fruits, were found in a commercial field of strawberry (Fragaria × ananassa) cv. Cal Giant in Yangyang County, Korea in May 2007. Masses of conidia were produced in acervuli in the center of lesions. The fungus was isolated on potato dextrose agar (PDA). Colonies grown on PDA were pale to mouse gray and became dark green to black in reverse. Conidia were formed in orange-to-salmon pink masses in the center of the culture. The average size of conidia on PDA was 15.2 × 4.6 μm, and they were hyaline, straight, cylindrical, with pointed ends, and aseptate (1). The fungus did not form an ascigerous stage in culture. Mycelial growth rate was 7.5 mm per day at 25°C on PDA. The identity of two isolates was confirmed as Colletotrichum acutatum J.H. Simmonds by PCR amplification using species-specific primers TBCA and TB5 (2), resulting in a characteristic 330-bp band on agarose gel. Morphological characters were in accordance with previous reports on C. acutatum. A pathogenicity test was conducted with five healthy plants of cvs. Cal Giant, Maehyang, Seolhyang, Kumhyang, Akihime, and Redpearl. After fruits and flowers were sprayed with a conidia suspension (105 conidia per ml), the plants were maintained at 10 to 25°C and 100% relative humidity in a greenhouse. As a control, five healthy plants were sprayed with sterile distilled water and incubated under the same conditions. Dark brown, water-soaked spots appeared on mature fruits of all cultivars after 5 days, and lesions on green fruits appeared on individual achenes. Flowers developed dark lesions, dried out, and died. No symptoms were found on the control plants. After the pathogen was reisolated from fruits and flowers lesions, the morphological characters developed in culture as described above. To our knowledge, this is the first report of C. acutatum causing strawberry anthracnose in Korea. References: (1) B. J. Smith and L. L. Black. Plant Dis. 74:69, 1990. (2) P. Talhinhas et al. Appl. Environ. Microbiol. 71:2987, 2005.


Plant Disease ◽  
2021 ◽  
Author(s):  
Kar Yan Zee ◽  
Norhayu Asib ◽  
Siti Izera Ismail

Guava (Psidium guajava L.) is an economically important tropical fruit crop and is cultivated extensively in Malaysia. In September and October 2019, postharvest fruit rot symptoms were observed on 30% to 40% of guava fruit cv. Kampuchea in fruit markets of Puchong and Ipoh cities in the states of Selangor and Perak, Malaysia. Initial symptoms appeared as brown, irregular, water-soaked lesions on the upper portion of the fruit where it was attached to the peduncle. Subsequently, lesions then progressed to cover the whole fruit (Fig.1A). Lesions were covered with an abundance of black pycnidia and grayish mycelium. Ten symptomatic guava fruit were randomly collected from two local markets for our investigation. For fungal isolation, small fragments (5×5 mm) were excised from the lesion margin, surface sterilized with 0.5% NaOCl for 2 min, rinsed three times with sterile distilled water, placed on potato dextrose agar (PDA) and incubated at 25 °C with 12-h photoperiod for 2-3 days. Eight single-spore isolates with similar morphological characteristics were obtained and two representative isolates (P8 and S9) were characterized in depth. Colonies on PDA were initially composed of grayish-white aerial mycelium, but turned dark-gray after 7 days (Fig. 1B). Abundant black pycnidia were observed after incubation for 4 weeks. Immature conidia were hyaline, aseptate, ellipsoid, thick-walled, and mature conidia becoming dark brown and 1-septate with longitudinal striations, 25.0 − 27.0 ± 2.5 × 13.0 − 14.0 ± 1.0 μm (n = 30) (Fig.1C, D). On the basis of morphology, both representative isolates were identified as Lasiodiplodia theobromae (Pat.) Griffon & Maubl. (Alves et al. 2008). For molecular identification, genomic DNA of the two isolates was extracted using the DNeasy plant mini kit (Qiagen, USA). The internal transcribed spacer (ITS) region of rDNA and translation elongation factor 1-alpha (EF1-α) genes were amplified using ITS5/ITS4 and EF1-728F/EF1-986R primer set, respectively (White et al. 1990, Carbone and Kohn 1999). BLASTn analysis of the resulting ITS and EF1-α sequences indicated 100% identity to L. theobromae ex-type strain CBS 164.96 (GenBank accession nos: AY640255 and AY640258, respectively) (Phillips et al. 2013). The ITS (MW380428, MW380429) and EF1-α (MW387153, MW387154) sequences were deposited in GenBank. Phylogenetic analysis using the maximum likelihood based on the combined ITS-TEF sequences indicated that the isolates formed a strongly supported clade (100% bootstrap value) to the related L. theobromae (Kumar et al. 2016) (Fig.2). A pathogenicity test of two isolates was conducted on six healthy detached guava fruits per isolate. The fruit were surface sterilized using 70% ethanol and rinsed twice with sterile water prior inoculation. The fruit were wound-inoculated using a sterile needle according to the method of de Oliveira et al. (2014) and five-mm-diameter mycelial agar plugs from 7-days-old PDA culture of the isolates were placed onto the wounds. Six additional fruit were wound inoculated using sterile 5-mm-diameter PDA agar plugs to serve as controls. Inoculated fruit were placed in sterilized plastic container and incubated in a growth chamber at 25 ± 1 °C, 90% relative humidity with a photoperiod of 12-h. The experiment was conducted twice. Five days after inoculation, symptoms as described above developed on the inoculated sites and caused a fruit rot, while control treatment remained asymptomatic. L. theobromae was reisolated from all symptomatic tissues and confirmed by morphological characteristics and confirmed by PCR using ITS region. L. theobromae has recently been reported to cause fruit rot on rockmelon in Thailand (Suwannarach et al. 2020). To our knowledge, this is the first report of L. theobromae causing postharvest fruit rot on guava in Malaysia. The occurrence of this disease needs to be monitored as this disease can reduce the marketable yield of guava. Preventive strategies need to be developed in the field to reduce postharvest losses.


Plant Disease ◽  
2012 ◽  
Vol 96 (6) ◽  
pp. 910-910 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
A. Poli ◽  
M. L. Gullino

Pear (Pyrus communis L.) is widely grown in Italy, the leading producer in Europe. In summer 2011, a previously unknown rot was observed on fruit of an old cultivar, Spadoncina, in a garden in Torino Province (northern Italy). The decayed area of the fruit was soft, dark brown, slightly sunken, circular, and surrounded by an irregular margin. The internal decayed area appeared rotten and brown and rotted fruit eventually fell. To isolate the causal agent, fruits were soaked in 1% NaOCl for 30 s and fragments (approximately 2 mm) were taken from the margin of the internal diseased tissues, cultured on potato dextrose agar (PDA), and incubated at temperatures between 20 and 28°C under alternating light and darkness. Colonies of the fungus initially appeared whitish, then turned dark gray. After about 30 days of growth, unicellular elliptical hyaline conidia were produced in pycnidia. Conidia measured 16 to 24 × 5 to 7 (average 20.1 × 5.7) μm (n = 50). The morphological characteristics are similar to those of the fungus Botryosphaeria dothidea (Moug.: Fr.) Ces. & De Not. (4). The internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced. BLAST analysis (1) of the 473-bp segment showed a 100% similarity with the sequence of the epitype of B. dothidea AY236949. The nucleotide sequence has been assigned the GenBank Accession No. JQ418493. Pathogenicity tests were performed by inoculating six pear fruits of the same cultivar (Spadoncina) after surface disinfesting in 1% sodium hypochlorite and wounding. Mycelial disks (8 mm diameter), obtained from 10-day-old PDA cultures of one strain, were placed on wounds. Six control fruits were inoculated with plain PDA. Fruits were incubated at 25 ± 1°C in plastic boxes. The first symptoms developed 3 days after inoculation. After 5 days, the rot was very evident and B. dothidea was consistently reisolated. Noninoculated fruits remained healthy. The pathogenicity test was performed twice. B. dothidea was identified on decayed pears in the United States (2), South Africa, New Zealand, Japan, and Taiwan (3). To our knowledge, this is the first report of the presence of B. dothidea on pear in Italy, as well as in Europe. In Italy, the economic importance of the disease on pear fruit is at present limited, although the pathogen could represent a risk for this crop. References: (1) S. F. Altschul et al. Nucleic Acids Res., 25:3389, 1997. (2) L. F. Grand. Agr. Res. Serv. Techn. Bull. 240:1, 1985. (3) Y. Ko et al. Plant Prot. Bull. (Taiwan) 35:211, 1993. (4) B. Slippers et al. Mycologia 96:83, 2004.


Plant Disease ◽  
2020 ◽  
Author(s):  
Wu Zhang ◽  
Xue Li Niu ◽  
Jin Yu Yang

As an economically important tropical and subtropical fruit crop, passion fruit (Passiflora edulis Sims) is widely planted in many provinces of southern China. In April 2017, postharvest fruit rot was observed on 15% to 25% of passion fruit in several fruit markets of Zhanjiang City in Guangdong Province. Initial disease symptoms on infected fruit were irregular, brown, water-soaked lesions, which enlarged into large black and sunken patches. Lesions were usually covered with an abundance of little black dots (pycnidia) and black-gray hyphae. For the pathogen isolation, fifteen symptomatic fruit were randomly collected from three local markets. Fourteen single-spore fungal isolates with similar morphology ware isolated from the infected tissues. Two isolates (ZW 49-1 and ZW 50-1) were randomly selected to further study. The colonies on PDA were initially greyish-white and became dark-gray with age. Abundant globular and irregular pycnidia were observed after incubation at 25 °C for 3 weeks. The conidia of the fungus were initially hyaline, unicellular, apex rounded, thick-walled, and ellipsoid, becoming dark brown, bicellular with longitudinal striations at maturity, 26.4 ± 2.5 × 13.4 ± 1.2 μm (n = 50). The morphology of the fungus resembled Lasiodiplodia theobromae (Pat.) Griff. & Maubl. (Phillips et al. 2013). To confirm species identification, the partial internal transcribed spacer (ITS) region of rDNA, translation elongation factor-alpha (EF1-α) and β-tubulin (TUB) gene were amplified from genomic DNA of the two isolates with the ITS1/ITS4, EF1-688F/EF1-986R, and Bt2a/Bt2b primers, respectively (Glass and Donaldson 1995; Alves et al. 2008; White et al. 1990). Base on the BLASTn analysis, the ITS (MT644473, MT644474), EF1-α (MT649210, MT649211) and TUB (MT649212, MT649213) sequences of both isolates were 100%, 99% and 100% similarity to the L. theobromae CBS 164.96 ex-type sequences in the NCBI database (AY640255, AY640258, and KU887532, respectively) (Phillips et al. 2013). For pathogenicity test, asymptomatic passion fruit were previously disinfested in 0.5 % sodium hypochlorite and superficially wounded with a sterile needle. Five-mm-diameter plugs with mycelial taken from 5-day-old PDA colonies were placed on the wounds. Sterile PDA plugs were used as negative controls. Each treatment had five replicates and the test was repeated twice. Fruit were maintained in plastic boxes to keep at 25°C for one week. One week after inoculation, gray mycelia had covered a majority of the fruit surface and caused a black, sunken rot. The inoculated fungus was reisolated and confirmed as L. theobromae by morphological characteristics. The mock inoculated fruit remained asymptomatic. The occurrence of fruit rot on passion fruit caused by L. theobromae was reported in Taiwan, China recently (Huang et al., 2019). To our knowledge, this is the first report of L. theobromae causing postharvest fruit rot on passion fruit in the Chinese mainland.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yusen Xiao ◽  
Guanghua Huo ◽  
Lili Liu ◽  
Chunxi Yang ◽  
Chaoyu Cui

The yellow peach (Amygdalus persica), is a fruit crop native to China with golden peel and pulp that is of particular interest in the fruit markets. In August of 2021, yellow peaches showing fruit rot symptoms were purchased from a commercial market in Linyi city, Shandong province, China. The symptoms included circular, tan to brown in color, rotten, necrotic lesions, and whitish mycelium mass in the center of the lesions. The infected fruit were surface disinfected with 1% NaClO for 30 s and rinsed with sterile distilled water three times. Diseased tissues from the infected fruits were cut into small segments, aseptically shifted onto potato dextrose agar media containing petri plates and incubated at 25℃ for 5 days. Eight isolates were obtained in total from two isolation experiments. Fungal colonies were initially white, aerial, fluffy at first, and gradually turned brown to gray, with black stromata at maturity. Alpha conidia were aseptate,hyaline,fusiform to ellipsoidal,and ranged in size from 4.16 to 7.76 µm × 1.95 to 3.14 µm (n=30). Beta conidia were aseptate, hyaline, filiform, curved to hamate, and 15.91 to 22.55 µm × 0.82 to 1.66 µm (n=30). The morphological characteristics were consistent with those of Diaporthe species (Gomes et al. 2013). For further identification, a multigene phylogenetic analysis was carried out. The internal transcribed spacer (ITS) region, translation elongation factor 1-α (TEF1-α), histone H3 (HIS), calmodulin (CAL), and β-tubulin (TUB) genes of two representative isolates were amplified by using primers ITS1/ITS4, EF1-728F/EF1-986R, CYLH3F/H3-1b,CAL228F/CAL737R, and Bt2a/Bt2b (Chaisiri et al. 2021), respectively. The sequences were deposited in GenBank (Accession No. OL375154 for ITS; OL406409 for TEF1-α; OL406410 for HIS; OL106407 for CAL; OL406408 for TUB). phylogenetic analyses were conducted using the concatenation of multiple sequences (ITS, TEF1-α, HIS, CAL, TUB) with Maximum Likelihood (ML) in IQtree v1.5.6 (Nguyen et al. 2015). Based on the morphological and phylogenetic characters, the isolates were identified as D. eres. A Pathogenicity test was performed by wound inoculation on harvested fruits of A. persica Variety ‘Jinxiu’. Mature and healthy yellow peaches purchased from Shandong, Anhui, and Hunan Provinces in China were surface sterilized with 1% NaClO solution for 1 minute, rinsed with sterile water and dried. Each fruit was wounded with a sterile scalpel creating a 2-3 mm incision on the peel. A 5 mm agar disc with mycelium grown on PDA at 28℃ for 7 days was placed on wound and sealed with parafilm. Sterile PDA plugs were used as controls. Ten fruit were used for each treatment and the assays were repeated three times. Inoculated fruit were placed in sterilized transparent plastic cans containing wet, sterile paper towels. After 5 days of incubation at 25℃, the same rot symptoms were observed on fruits inoculated with mycelium and the control remained symptomless. D. eres was re-isolated from the lesions of inoculated fruits and the pathogen identification was confirmed by molecular analysis, thus fulfilling complete Koch’s postulates. Although D. eres was previously reported on peach trees of causing shoot blight (Thomidis and Michailides 2009) and stem canker (Prencipe et al. 2017). To our knowledge, this is the first report of D. eres causing postharvest fruit rot of yellow peach in China and it may lead to considerable economic losses in the peach industry should post-harvest disease management practices not be implemented.


Plant Disease ◽  
2021 ◽  
Author(s):  
Xianping Zhang ◽  
Jiwen Xia ◽  
Jiakui Liu ◽  
Dan Zhao ◽  
Lingguang Kong ◽  
...  

Muskmelon (Cucumis melo L.) is one of the most widely cultivated and economically important fruit crops in the world. However, many pathogens can cause decay of muskmelons; among them, Fusarium spp. is the most important pathogen, affecting fruit yield and quality (Wang et al. 2011). In May 2017, fruit rot symptoms were observed on ripening muskmelons (cv. Jipin Zaoxue) in several fields in Liaocheng of Shandong Province, China. Symptoms appeared as brown, water-soaked lesions, irregularly circular in shape, with the lesion size ranging from a small spot (1 to 2 cm) to the decay of the entire fruit. The core and the surface of the infected fruit were covered with white to rose-reddish mycelium. Two infected muskmelons were collected from each of two fields, 10 km apart. Tissues from the inside of the infected fruit were surface disinfected with 75% ethanol for 30 s, and cultured on potato dextrose agar (PDA) at 25 °C in the dark for 5 days. Four purified cultures were obtained using the single spore method. On carnation leaf agar (CLA), macroconidia had a pronounced dorsiventral curvature, falcate, 3 to 5 septa, with tapered apical cell, and foot-shaped basal cell, measuring 19 to 36 × 4 to 6 μm. Chlamydospores were abundant, 5.5–7.5 μm wide, and 5.5–10.5 μm long, ellipsoidal or subglobose. No microconidia were observed. These morphological characteristics were consistent with the descriptions of F. pernambucanum (Santos et al. 2019). Because these isolates had similar morphology, one representative isolate was selected for multilocus phylogenetic analyses. DNA was extracted from the representative isolate using the CTAB method. The nucleotide sequences of the internal transcribed spacers (ITS) (White et al. 1990), translation elongation factor 1-α gene (TEF1), RNA polymerase II second largest subunit gene (RPB2), calmodulin (CAM) (Xia et al. 2019) were amplified using specific primers, sequenced, and deposited in GenBank (MN822926, MN856619, MN856620, and MN865126). Based on the combined dataset of ITS, TEF1, RPB2, CAM, alignments were made using MAFFT v. 7, and phylogenetic analyses were processed in MEGA v. 7.0 using the maximum likelihood method. The studied isolate (XP1) clustered together with F. pernambucanum reference strain URM 7559 (99% bootstrap). To perform pathogenicity test, 10 μl of spore suspensions (1 × 106 conidia/ml) were injected into each muskmelon fruit using a syringe, and the control fruit was inoculated with 10 μl of sterile distilled water. There were ten replicated fruits for each treatment. The test was repeated three times. After 7 days at 25 °C, the interior of the inoculated muskmelons begun to rot, and the rot lesion was expanded from the core towards the surface of the fruit, then white mycelium produced on the surface. The same fungus was re-isolated from the infected tissues and confirmed to fulfill the Koch’s postulates. No symptoms were observed on the control muskmelons. To our knowledge, this is the first report of F. pernambucanum causing of fruit rot of muskmelon in China. Considering the economic value of the muskmelon crop, correct identification can help farmers select appropriate field management measures for control of this disease.


Plant Disease ◽  
2020 ◽  
Author(s):  
Fangmin Hao ◽  
Quanyu Zang ◽  
Weihong Ding ◽  
Erlei Ma ◽  
Yunping Huang ◽  
...  

Melon (Cucumis melo L.) is a member of the Cucurbitaceae family, an important economical and horticultural crop, which is widely grown in China. In May 2020, fruit rot disease with water-soaked lesions and pink molds on cantaloupe melons was observed in several greenhouses with 50% disease incidence in Ningbo, Zhejiang Province in China. In order to know the causal agent, diseased fruits were cut into pieces, surface sterilized for 1 min with 1% sodium hypochlorite (NaClO), 2 min with 75% ethyl alcohol, rinsed in sterile distilled water three times (Zhou et al. 2018), and then placed on potato dextrose agar (PDA) medium amended with streptomycin sulfate (100 μg/ml) plates at 25°C for 4 days. The growing hyphae were transferred to new PDA plates using the hyphal tip method, putative Fusarium colonies were purified by single-sporing. Twenty-five fungal isolates were obtained and formed red colonies with white aerial mycelia at 25°C for 7 days, which were identified as Fusarium isolates based on the morphological characteristics and microscopic examination. The average radial mycelial growth rate of Fusarium isolate Fa-25 was 11.44 mm/day at 25°C in the dark on PDA. Macroconidia were stout with curved apical and basal cells, usually with 4 to 6 septa, and 29.5 to 44.2 × 3.7 to 5.2 μm on Spezieller Nährstoffarmer agar (SNA) medium at 25°C for 10 days (Leslie and Summerell 2006). To identify the species, the internal transcribed spacer (ITS) region and translational elongation factor 1-alpha (TEF1-α) gene of the isolates were amplified and cloned. ITS and TEF1-α was amplified using primers ITS1/ITS4 and EF1/EF2 (O’Donnell et al. 1998), respectively. Sequences of ITS (545 bp, GenBank Accession No. MT811812) and TEF1-α (707 bp, GenBank Acc. No. MT856659) for isolate Fa-25 were 100% and 99.72% identical to those of F. asiaticum strains MSBL-4 (ITS, GenBank Acc. MT322117.1) and Daya350-3 (TEF1-α, GenBank Acc. KT380124.1) in GenBank, respectively. A phylogenetic tree was established based on the TEF1-α sequences of Fa-25 and other Fusarium spp., and Fa-25 was clustered with F. asiaticum. Thus, both morphological and molecular characterizations supported the isolate as F. asiaticum. To confirm the pathogenicity, mycelium agar plugs (6 mm in diameter) removed from the colony margin of a 2-day-old culture of strain Fa-25 were used to inoculate melon fruits. Before inoculation, healthy melon fruits were selected, soaked in 2% NaClO solution for 2 min, and washed in sterile water. After wounding the melon fruits with a sterile needle, the fruits were inoculated by placing mycelium agar plugs on the wounds, and mock inoculation with mycelium-free PDA plugs was used as control. Five fruits were used in each treatment. The inoculated and mock-inoculated fruits were incubated at 25°C with high relative humidity. Symptoms were observed on all inoculated melon fruits 10 days post inoculation, which were similar to those naturally infected fruits, whereas the mock-inoculated fruits remained symptomless. The fungus re-isolated from the diseased fruits resembled colony morphology of the original isolate. The experiment was conducted three times and produced the same results. To our knowledge, this is the first report of fruit rot of melon caused by F. asiaticum in China.


Plant Disease ◽  
2012 ◽  
Vol 96 (3) ◽  
pp. 458-458 ◽  
Author(s):  
T. Thomidis ◽  
E. Exadaktylou

In June 2011, symptoms of postharvest rot were observed on approximately 3% of all cherries collected from commercial orchards of cultivars Lapen and Ferrovia in the prefectures of Imathia and Pella (northern Greece). Fruit were harvested in a timely manner to avoid overripeness. No wounds or other predisposing injuries were observed on the infected fruits. Lesions enlarged rapidly and separated easily from healthy tissue when pressure was applied. Infected tissues were pale and water soaked and the associated fungal spores were dark and powdery and easily liberated when mature. The fungus grew rapidly and produced black colonies on acidified potato dextrose agar (2.5 ml of 85% lactic acid per liter of nutrient medium) after 5 days at 24°C. Identification of the pathogen was based on morphological characteristics (1). The conidial head was radiate, vesicles were nearly spherical and covered with metulae and phialides (biseriate). Conidia were globose (3 to 5 μm in diameter) and usually very rough with irregular ridges, bars, and verrucae. Koch's postulates were completed in the laboratory by inoculating mature cherry fruits (cv. Lapen). The fruits were surface sterilized by dipping in 10% chloride bleach solution, allowed to dry in a laminar flow hood, and wounded with a sharp glass rod that was 2 mm in diameter. A 40-μl drop of a suspension containing 20,000 conidia per ml of water was placed on each wound. There were 20 inoculated and 20 control fruits (similarly wounded and inoculated with a 40-μl drop of sterile distilled water) in a randomized design and incubated at 24 to 26°C for 6 days. Koch's postulates were satisfied after reisolating the fungus from inoculated fruit that developed symptoms similar to those observed on fruit collected from orchards. Control fruits did not show any symptom of the disease. To our knowledge, this is the first report of the occurrence of Aspergillus niger as the causal agent of postharvest rots of cherries in Greece. Postharvest fruit rots caused by A. niger have been reported in cherry orchards of other countries around the world (2). Because this disease causes postharvest rots of cherry fruits, measures may need to be implemented to manage the pathogen. References: (1) M. A. Klich. Page 12 in: Identification of Common Aspergillus Species. Centraalbureau Voor Schimmelcultures, Utrecht, the Netherlands, 2002. (2) A. Valiuskaite et al. Phytopathol. Pol. 35:197, 2005.


Plant Disease ◽  
2010 ◽  
Vol 94 (6) ◽  
pp. 788-788 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. T. Amatulli ◽  
M. L. Gullino

Persimmon (Diospyros kaki L.) is widely grown in Italy, the leading producer in Europe. In the fall of 2009, a previously unknown rot was observed on 3% of fruit stored at temperatures between 5 and 15°C in Torino Province (northern Italy). The decayed area was elliptical, firm, and appeared light brown to dark olive-green. It was surrounded by a soft margin. The internal decayed area appeared rotten, brown, and surrounded by bleached tissue. On the decayed tissue, black pycnidia that were partially immersed and up to 0.5 mm in diameter were observed. Light gray conidia produced in the pycnidia were unicellular, ovoid or lacriform, and measured 3.9 to 6.7 × 2.3 to 3.5 (average 5.0 × 2.9) μm. Fragments (approximately 2 mm) were taken from the margin of the internal diseased tissues, cultured on potato dextrose agar (PDA), and incubated at temperatures between 23 and 26°C under alternating light and darkness. Colonies of the fungus initially appeared ash colored and then turned to dark greenish gray. After 14 days of growth, pycnidia and conidia similar to those described on fruit were produced. The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 502-bp segment showed a 100% similarity with the sequence of Phacidiopycnis washingtonensis Xiao & J.D. Rogers (GenBank Accession No. AY608648). The nucleotide sequence has been assigned the GenBank Accession No. GU949537. Pathogenicity tests were performed by inoculating three persimmon fruits after surface disinfesting in 1% sodium hypochlorite and wounding. Mycelial disks (10 mm in diameter), obtained from PDA cultures of one strain were placed on wounds. Three control fruits were inoculated with plain PDA. Fruits were incubated at 10 ± 1°C. The first symptoms developed 6 days after the artificial inoculation. After 15 days, the rot was very evident and P. washingtonensis was consistently reisolated. Noninoculated fruit remained healthy. The pathogenicity test was performed twice. Since P. washingtonensis was first identified in the United States on decayed apples (2), ‘Fuji’, ‘Gala’, ‘Golden Delicious’, ‘Granny Smith’, ‘Red Chief’, and ‘Stark Delicious’, apple fruits also were artificially inoculated with a conidial suspension (1 × 106 CFU/ml) of the pathogen obtained from PDA cultures. For each cultivar, three surface-disinfested fruit were wounded and inoculated, while three others served as mock-inoculated (sterile water) controls. Fruits were stored at temperatures ranging from 10 to 15°C. First symptoms appeared after 7 days on all the inoculated apples. After 14 days, rot was evident on all fruit inoculated with the fungus, and P. washingtonensis was consistently reisolated. Controls remained symptomless. To our knowledge, this is the first report of the presence of P. washingtonensis on persimmon in Italy, as well as worldwide. The occurrence of postharvest fruit rot on apple caused by P. washingtonensis was recently described in the United States (3). In Italy, the economic importance of the disease on persimmon fruit is currently limited, although the pathogen could represent a risk for apple. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) Y. K. Kim and C. L. Xiao. Plant Dis. 90:1376, 2006. (3) C. L. Xiao et al. Mycologia 97:473, 2005.


Plant Disease ◽  
2021 ◽  
Author(s):  
Marcel Wenneker ◽  
Khanh Pham ◽  
Engelien Kerkhof ◽  
Dalphy O.C. Harteveld

In late summer 2019, a severe outbreak of fruit rot was observed in commercial ‘Pink Lady’ apple orchards (>20 ha in total) in the region Emilia-Romagna (Northern Italy). The symptoms on the fruit appeared as small circular red to brown lesions. Disease incidences of over 50% of the fruits were observed. To isolate the causal agent, 15 affected apples were collected and small portions of fruit flesh were excised from the lesion margin and placed on potato dextrose agar (PDA). The plates were incubated at 20°C in the dark, and pure cultures were obtained by transferring hyphal tips on PDA. The cultures showed light to dark gray, cottony mycelium, with the underside of the culture being brownish and becoming black with age. Conidia (n=20) were cylindrical, aseptate, hyaline, rounded at both ends, and 12.5 to 20.0 × 5.0 to 7.5 μm. The morphological characteristics were consistent with descriptions of Colletotrichum species of the C. gloeosporioides species complex, including C. fructicola (Weir et al. 2012). The identity of two representative isolates (PinkL2 & PinkL3) from different apples was confirmed by means of multi-locus gene sequencing. Genomic DNA was extracted using the LGC Mag Plant Kit (Berlin, Germany) in combination with the Kingfisher method (Waltham, USA). Molecular identification was conducted by sequencing the ITS1/ITS4 region and partial sequences of four other gene regions: chitin synthase (CHS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT), and beta-tubulin (TUB). The sequences have been deposited in GenBank under accession numbers MT421924 & MT424894 (ITS), MT424612 & MT424613 (CHS), MT424616 & MT424617 (GAPDH), MT424614 & MT424615 (ACT), and MT424620 & MT424621 (TUB). MegaBLAST analysis revealed that our ITS sequences matched with 100% identity to Colletotrichum fructicola (Genbank JX010177). The CHS, GAPDH, ACT and TUB sequences of both isolates were 100% identical with C. fructicola culture collection sequences in Genbank (JX009807, JX009923, JX009436 and JX010400, respectively), confirming the identity of these isolates as C. fructicola. Koch's postulates were performed with 10 mature ‘Pink Lady’ apples. Surface sterilized fruit were inoculated with 20 μl of a suspension of 105 conidia ml–1 after wounding with a needle. The fruits were incubated at 20˚C at high relative humidity. Typical symptoms appeared within 4 days on all fruit. Mock-inoculated controls with sterile water remained symptomless. The fungus was reisolated and confirmed as C. fructicola by morphology and sequencing of all previously used genes. Until recently the reported causal agents of bitter rot of apple in Europe belong to the Colletotrichum acutatum species complex (Grammen et al. 2019). C. fructicola, belonging to C. gloeosporioides species complex, is known to cause bitter rot of apple in the USA, Korea, Brazil, and Uruguay (Kim et al. 2018; Velho et al. 2015). There is only one report of bitter rot associated with C. fructicola on apple in Europe (France) (Nodet et al. 2019). However, C. fructicola is also the potential agent of Glomerella leaf spot (GLS) of apple (Velho et al. 2015; 2019). To the best of our knowledge this is the first report of C. fructicola on apples in Italy. It is important to stress that the C. gloeosporioides species complex is still being resolved and new species on apple continue to be identified, e.g. C. chrysophilum that is very closely related to C. fructicola (Khodadadi et al. 2020). Given the risks of this pathogen the presence of C. fructicola in European apple orchards should be assessed and management strategies developed.


Sign in / Sign up

Export Citation Format

Share Document