scholarly journals First Report of Fusarium equiseti Causing Fusarium Wilt on Potato (Solanum tuberosum) in China

Plant Disease ◽  
2021 ◽  
Author(s):  
Lingxiao Cui ◽  
Chengde Yang ◽  
Liping Yang ◽  
Mengjun Jin ◽  
Lijuan Wei

Potato (Solanum tuberosum) is one of the most economically important crops in China, containing carbohydrates, protein, fiber, numerous vitamins and minerals, and is a heart healthy food (Raidl, 2020). Potato infected by Fusarium spp. exhibits quality and yield decline, and even death. In infected plants, the upper leaves exhibit chlorosis, the lower leaves wither and the vascular bundles of stems and tubers turn yellow, and then tan to brown. In August 2018, symptomatic potato stems and roots were collected from Zhangye city, Gansu province, China. Diseased stem tissues were surface sterilized with 75% alcohol for 30 s, and then rinsed in sterile water. The tissue pieces were placed on potato dextrose agar (PDA) and incubated at 25°C in darkness. Fusarium-like colonies were consistently isolated and three monoconidial isolates were obtained. Isolate 3SMJ-2 was selected as a representative for morphological characterization, molecular analysis, and pathogenicity tests. 3SMJ-2 was inoculated in PDA liquid medium, grown on a shaker for 7 days at 25℃ to obtain a mix suspension of hypha fragments and spores (107 spores/mL). Healthy potato plants, named “Xin Daping” and were planted in pots (17 cm diameter by 12 cm) filled with 2L of sterile soil per pot. After 8 weeks, the plants were inoculated with the inoculum or distilled water. Then they were incubated in growth chambers at 25°C under a 12-h/12-h day/night potato period with 90% relative humidity for 24 h. For each treatment, 3 pots were inoculated. After 50 days, 100% of the inoculated potato plants exhibited wilt symptoms similar to those in the field but the control plants were symptomless. A Fusarium identical to strain 3SMJ-2 was re-isolated from symptomatic potato plants to fulfilling Koch’s postulates. Morphological characteristics of the re-isolated strain were identical to the original isolate, which confirmed pathogenicity of strain 3SMJ-2 originally isolated from the potatoes. Colonies of 3SMJ-2 were white with short conidiophores, a few microconidia and sickle-shaped macroconidia (25.2 to 42.9× 3.1 to 4.6 µm) (n = 60) with 4~7 septa, and mostly 5 septa, after cultivated on PDA in an incubator at 25℃ for 14 days. Spherical terminal or intercalary chlamydospores were observed on the mycelium. Strain 3SMJ-2 was identified preliminarily as Fusarium sp. based on morphological characteristics (Leslie et al., 2006). Genomic DNA was extracted from 3SMJ-2 using the OMEGA Fungal DNA kit according to the manufacturer’s protocol. The internal transcribed spacer (ITS), translation elongation factor 1-alpha (TEF) and RNA polymerase II second largest subunit (RPB2) were amplified using ITS1/ITS4 (White et al., 1990), Ef728M/Tef1R (Stępień et al., 2012) and 5F2 /7cR (O'Donnell et al., 2007), respectively. After sequencing by Beijing TSINGKE Biological Technology Co., Ltd., 3 fragments of approximately 519 bp, 587 bp and 1059 bp from the strain 3SMJ-2 were deposited in GenBank as MN420681, MW561963 and MW561964. The ITS, TEF and RPB2 sequences were 100%, 100% and 99.8% identical to those of F.equiseti (KY365589, KF499577, and MH582110). Based on the pathogenicity tests, morphological characteristics and molecular analyses, we identified the strain 3SMJ-2 as F. equiseti, the pathogen causing Fusarium wilt on potato in Zhangye City. Although, F. equiseti has been reported to cause root rot of cowpea (Li et al., 2017) and sugar beet (Cao et al., 2018) in China. To our knowledge, this is the first report confirming F. equiseti causing potato wilt in China. Potato is an economically important crop in Gansu and the occurrence of the new disease caused by F. equiseti on potato needs to be properly managed to reduce yield loss.

Plant Disease ◽  
2013 ◽  
Vol 97 (10) ◽  
pp. 1377-1377 ◽  
Author(s):  
H.-W. Choi ◽  
S. K. Hong ◽  
Y. K. Lee ◽  
H. S. Shim

In July 2010, fusarium wilt symptoms of tomato (Lycopersicon esculentum Mill.) plants were found in two commercial greenhouses in the Damyang area of Korea. Approximately 1% of 7,000 to 8,000 tomato plants were wilted and chlorotic in each greenhouse. The vascular tissue was usually dark brown and the discoloration extended to the apex. Fragments (each 5 × 5 mm) of the symptomatic tissue were surface-sterilized with 1% NaOCl for 1 min, then rinsed twice in sterilized distilled water (SDW). The tissue pieces were placed on water agar and incubated at 25°C for 4 to 6 days. Nine Fusarium isolates were obtained from four diseased plants, of which three isolates were identified as F. oxysporum based on morphological characteristics on carnation leaf agar medium and DNA sequences of the translation elongation factor 1-alpha (EF-1α) gene (2). Macroconidia were mostly 3- to 5-septate, slightly curved, and 28 to 53 × 2.8 to 5.2 μm. Microconidia were abundant, borne in false heads or short monophialides, generally single-celled, oval to kidney shaped, and 5 to 23 × 3 to 5 μm. Chlamydospores were single or in short chains. The EF-1α gene was amplified from three isolates by PCR assay using ef1 and ef2 primers (3), and the amplification products were sequenced. The nucleotide sequences obtained were deposited in GenBank (Accession Nos. KC491844, KC491845, and KC491846). BLASTn analysis showed 99% homology with the EF-1α sequence of F. oxysporum f. sp. lycopersici MN-24 (HM057331). Pathogenicity tests and race determination were conducted using root-dip inoculation (4) on seedlings of tomato differential cultivars: Ponderosa (susceptible to all races), Momotaro (resistant to race 1), Walter (resistant to races 1 and 2), and I3R-1 (resistant to all races). A spore suspension was prepared by flooding 5-day-old cultures on potato dextrose agar with SDW. Plants at the first true-leaf stage were inoculated by dipping the roots in the spore suspension (1 × 106 conidia/ml) for 10 min. Inoculated plants were transplanted into pots containing sterilized soil, and maintained in the greenhouse at 25/20°C (12/12 h). Twenty-four seedlings of each cultivar were arranged into three replications. An equal number of plants of each cultivar dipped in water were used as control treatments. Disease reaction was evaluated 3 weeks after inoculation, using a disease index on a scale of 0 to 4 (0 = no symptoms, 1 = slightly swollen and/or bent hypocotyl, 2 = one or two brown vascular bundles in the hypocotyl, 3 = at least two brown vascular bundles and growth distortion, 4 = all vascular bundles brown and the plant either dead or very small and wilted). All isolates caused symptoms of fusarium wilt on all cultivars except I3R-1, indicating that the isolates were race 3. The pathogen was reisolated from the discolored vascular tissue of symptomatic plants. Control plants remained asymptomatic, and the pathogen was not reisolated from the vascular tissue. Fusarium wilt of tomato caused by isolates of F. oxysporum f. sp. lycopersici races 1 and 2 has been reported previously; however, race 3 has not been reported in Korea (1). To our knowledge, this is the first report of isolates of F. oxysporum f. sp. lycopersici race 3 on tomato in Korea. References: (1) O. S. Hur et al. Res. Plant Dis. 18:304, 2012 (in Korean). (2) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Ames, IA, 2006. (3) K. O'Donnell et al. Proc. Nat. Acad. Sci. 95:2044, 1998. (4) M. Rep et al. Mol. Microbiol. 53:1373, 2004.


Plant Disease ◽  
2021 ◽  
Author(s):  
Fengfeng Cai ◽  
Chengde Yang ◽  
Ting Ma ◽  
Mengjun Jin ◽  
Lingxiao Cui

Walnut (Juglans sinensis L.) is an important economic tree. Its fruit are rich in omega-3 essential fatty acids, which are valuable nutritionally (Cheon et al, 2013). In March 2019, severe branch blight of walnuts (cv. Qingxiang) were observed in two fields in Ganquan Town, Gansu Province, China (N 33°56'/E105°44'). The incidence was about 3% among 10,000 walnuts. Disease symptoms included fusiform or oval black lesions gradually expanded on the branches, blight and dieback of branches, reddish brown dead branch bark with lots of black small spots (pycnidia), and defoliation. To isolate pathogen, 30 diseased tissues collected from different trees were disinfected with 0.1% HgCl solution for 1 min, rinsed in sterilized water 3 times, and placed on potato dextrose agar (PDA) at 25℃ in the dark. About three days later, 4 fungal isolates (3-3, 3-6, 3-9 and H3) with similar morphological characteristics were obtained. Their colonies, with regular margin on OA, 6.1~6.8 cm diam. after 7 days, were loose, greenish olivaceous to olivaceous grey, velvety, floccose to woolly. The conidia (n=60) were 4.77 to 8.84 μm long (mean = 6.88 μm; SD ± 0.91 μm) × 1.71 to 3.89 μm wide (mean = 2.81 μm; SD ± 0.53 μm), cylindrical, ellipsoidal to oblong, hyaline and aseptate. Pycnidia (n=25) were 76.66 ~ 132.86μm diam. (mean = 102.93 μm; SD ± 12.15 μm), variable in shape and size, mostly globose to subglobose. These characteristics were similar to B. exigua var. exigua (Boeremia et al, 2004). Pathogenicity tests of four isolates were performed 3 times on 5 healthy 2-3 years old walnuts (cv. Qingxiang). Plants were wounded by insect needle No.6 and inoculated with 5 mm mycelium block grew on PDA medium or PDA medium as control and kept moist in climatic cabinet (> 85% RH, 25°C). After 3 days, oval black lesions were occurred on branches and gradually expanded, but control was asymptomatic. And original isolates were re-isolated from these diseased shoots. Genomic DNA of four isolates were extracted, and the internal transcribed spacer (ITS), β-tubulin (tub2) and RNA polymerase II second largest subunit (rpb2) gene were amplified and sequenced using the primers ITS1/ITS4, Btub2Fd/Btub4Rd and RPB2-5F2/fRPB2-7CR (White et al, 1990; Woudenberg et al, 2009; Chen et al, 2015), respectively. Sequences were deposited in GenBank (accession no. ITS: MT154621, MT154622, MT154623, MT154624; tub2: MT223481, MT223482, MT223483, MT223484; rpb2: MW448152, MW448153, MW459982, MW459983), and compared with available sequences in NCBI. Results showed that ITS of four isolates have 100% sequence identity to Boeremia spp., tub2 and rpb2 have 100% sequence identity to B. exigua var. exigua (GenBank accession no. MN983734, MN983315) and B. exigua var. linicola (GenBank accession no. MN983785, MT920619). According to host specificity (Boeremia et al, 1976). A 106 conidium/mL spore suspension of four isolates or sterile water were inoculated on stem base of two-month old flax seedlings, placed in climatic cabinet (> 85% RH, 25°C) for moisturing and repeated three times. After two weeks, all inoculated plants still were asymptomatic, indicated that four isolates aren’t B. exigua var. linicola. Therefore, they were identified as B. exigua var. exigua based on morphological characteristics, molecular analysis and pathogenicity tests. To our knowledge, this is the first report of B. exigua var. exigua causing walnut branch blight worldwide, which will provide further guidance for prevention and control of walnut branch blight.


Plant Disease ◽  
2022 ◽  
Author(s):  
Martina Sanna ◽  
Massimo Pugliese ◽  
Maria Lodovica GULLINO ◽  
Monica Mezzalama

Maize (Zea mays L.) is a cereal crop of great economic importance in Italy; production is currently of 60,602,320 t, covering 588,597 ha (ISTAT 2021). Trichoderma species are widespread filamentous fungi in soil, well known and studied as biological control agents (Vinale et al., 2008). Seeds of a yellow grain hybrid (class FAO 700, 132 days) were collected in September 2020 from an experimental field located in Carmagnola (TO, Italy: GPS: 44°53'11.0"N 7°40'60.0"E) and tested with blotter test (Warham et al., 1996) to assess their phytosanitary condition. Over the 400 seeds tested, more than 50% showed rotting and development of green mycelium typical of the genus Trichoderma. Due to the high and unexpected percentage of decaying kernels, ten colonies were identified by morphological and molecular methods. Single conidia colonies of one Trichoderma (T5.1) strain were cultured on Potato Dextrose Agar (PDA) for pathogenicity tests, and on PDA and Synthetic Nutrient-Poor Agar (SNA) for morphological and molecular identification. The colonies grown on PDA and SNA showed green, abundant, cottony, and radiating aerial mycelium, and yellow pigmentation on the reverse. Colony radius after 72 h at 30°C was of 60-65 mm on PDA and of 50-55 mm on SNA. The isolates produced one cell conidia 2.8 - 3.8 µm long and 2.1 - 3.6 µm wide (n=50) on SNA. Conidiophores and phialides were lageniform to ampulliform and measured 4.5 – 9.7 µm long and 1.6 – 3.6 µm wide (n=50); the base measure 1.5 – 2.9 µm wide and the supporting cell 1.4 – 2.8 µm wide (n=50). The identity of one single-conidia strain was confirmed by sequence comparison of the internal transcribed spacer (ITS), the translation elongation factor-1α (tef-1α), and RNA polymerase II subunit (rpb2) gene fragments (Oskiera et al., 2015). BLASTn searches of GenBank using ITS (OL691534) the partial tef-1α (OL743117) and rpb2 (OL743116) sequences of the representative isolate T5.1, revealed 100% identity for rpb2 to T. afroharzianum TRS835 (KP009149) and 100% identity for tef-1α to T. afroharzianum Z19 (KR911897). Pathogenicity tests were carried out by suspending conidia from a 14-days old culture on PDA in sterile H2O to 1×106 CFU/ml. Twenty-five seeds were sown in pots filled with a steamed mix of white peat and perlite, 80:20 v/v, and maintained at 23°C under a seasonal day/night light cycle. Twenty primary ears were inoculated, by injection into the silk channel, with 1 ml of a conidial suspension of strain T5.1 seven days after silk channel emergence (BBCH 65) (Pfordt et al., 2020). Ears were removed four weeks after inoculation and disease severity, reaching up to 75% of the kernels of the twenty cobs, was assessed visually according to the EPPO guidelines (EPPO, 2015). Five control cobs, inoculated with 1 ml of sterile distilled water were healthy. T. afroharzianum was reisolated from kernels showing a green mold developing on their surface and identified by resequencing of tef-1α gene. T. afroharzianum has been already reported on maize in Germany and France as causal agent of ear rot of maize (Pfordt et al. 2020). Although several species of Trichoderma are known to be beneficial microorganisms, our results support other findings that report Trichoderma spp. causing ear rot on maize in tropical and subtropical areas of the world (Munkvold and White, 2016). The potential production of mycotoxins and the losses that can be caused by the pathogen during post-harvest need to be explored. To our knowledge this is the first report of T. afroharzianum as a pathogen of maize in Italy.


Plant Disease ◽  
2021 ◽  
Author(s):  
Bo Xia ◽  
Yue Liang ◽  
Jianzhong Hu ◽  
Xiaoling Yan ◽  
Liqiang Yin ◽  
...  

Sea buckthorn (Hippophae rhamnoides) is an important deciduous shrub for fruit and ecological restoration in arid and semi-arid regions of China. Twelve Chinese and Russian cultivars (cv. Shenqiuhong, eshi01, ... eshi11) were planted about 1.6 acre area in a seedling nursery, located in Qingyang City of Gansu province in northwest China, where high mortality (more than 70%) of sea buckthorn was observed in late July 2019. Symptoms consisted of massive chlorosis, drooping leaves and dried-up stems on 5-year-old trees. Pieces of tree roots and stems with irregular light-brown discoloration in the xylem vessels were selected. Small pieces of discolored tissue were surface disinfested (1 min in 1% sodium hypochlorite, followed by three rinses with sterile distilled water), air-dried, and placed on potato dextrose agar (PDA) medium for 5 days at 25°C in the dark. A fungus was consistently isolated from both diseased roots and stems tissues. Colonies on PDA grew rapidly. Dense mycelia were pinky-white initially, and became carmine red color with age on the undersurface of the plate. Macroconidia were moderately curved, 3 to 5 marked septa, hyaline, thick walled, and measuring 27.8± 3.6 µm × 4.8 ± 0.5 µm (n = 30). Microconidia were abundant, pear-shaped, ellipsoid to fusoid, often with a papilla at the base, and 8.4 ± 2.2 µm ×3.1 ± 0.3 µm (n = 30). Genomic DNA was extracted for amplification and sequencing of the internal transcribed spacer region (ITS1 and ITS4 primers) (White et al. 1990) of the ribosomal DNA (Accession Nos. MN160235 to MN160238) and translation elongation factor-1 alpha (EF1 and EF2 primers, accession Nos. MN429075 to MN429078) (O’Donnell et al. 1998). The sequences revealed 99% similarity to the sequences of the ITS (AY188917), and 100% identity with EF1-α (JF740808) regions of Fusarium sporotrichioides. Based on morphological and molecular characteristics, the fungus was identified as F. sporotrichioides (Leslie and Summerell 2006). Koch’s postulates were fulfilled on healthy, potted 1-year-old sea buckthorn seedings using two isolates in a greenhouse at 25 °C, 90% relative humidity, and 12-hour light/dark photoperiod. Ten potted seedings were inoculated on the stems by placing a 5-mm-diameter mycelial plug (5-day-old PDA cultures for each isolate) into the surface of a wound created with a needle, and the inoculation sites were covered with Parafilm to maintain moisture. Ten seedings were inoculated with PDA plugs as controls. Seven to ten days after inoculation, typical symptoms of dark-brown necrotic lesions on chlorotic leaf margins were observed. About 2 weeks after inoculation, the inoculated stems were gradually dry up, accompanied by withering and fallen leaves. Control plants remained asymptomatic. Pathogens were successfully isolated from the inoculated stems again, exhibiting morphological characteristics identical to those of F. sporotrichioides. Previous papers reported F. sporotrichioides as a common pathogen caused lavender wilt (Cosic et al. 2012), foliar spots on forage corn (Moya-Elizondo et al. 2013) and maize ear rot (Wang et al. 2019). To our knowledge, this is the first report of sea buckthorn stem wilt caused by F. sporotrichioides on several Chinese and Russian cultivars in Gansu province of China. In Heilongjiang province, the same disease was reported in 2010 (Song et al. 2010), nearly 30 longitudes away from Gansu province. Therefore, this disease appears to be a serious risk for future sea buckthorn production.


Plant Disease ◽  
2020 ◽  
Vol 104 (10) ◽  
pp. 2551-2555
Author(s):  
Luoye Li ◽  
Mengying Lei ◽  
Honghong Wang ◽  
Xiaozhu Yang ◽  
Mebeaselassie Andargie ◽  
...  

Ormosia pinnata (Lour.) Merr. is an important tree used for landscape and plant recovery of barren slopes in China. During an investigation of plant disease on landscape trees in 2018, a dieback was observed on O. pinnata trees in Guangzhou, Guangdong Province, China. Symptoms were characterized by initial dryness of the twigs and eventual death of the whole branch of the tree. Isolations from symptomatic branches yielded 13 isolates including two main morphotypes. Pathogenicity tests showed that isolate GDOP1 from Type I caused dieback of O. pinnata. Based on morphological characteristics and molecular analysis of the internal transcribed spacer rDNA (ITS1-5.8S-ITS2) and partial sequence of the translation elongation factor 1α (EF1-α), the fungus causing dieback on O. pinnata was identified as Lasiodiplodia pseudotheobromae. This is the first report of L. pseudotheobromae infecting O. pinnata in the world.


Plant Disease ◽  
2020 ◽  
Author(s):  
Hao Chen ◽  
Gui Qiao Liu ◽  
Longhai Xue ◽  
Chunjie Li ◽  
Guiqin Zhao ◽  
...  

Oat (Avena sativa) is extensively planted as a fodder crop on the vast ranges of northern and northwestern China, and it has become an important supplementary feed for grazing livestock (Yang et al. 2010). Microdochium nivale has been reported associated with seedling blight in many temperate regions (Imathiu et al. 2010) and the damage can result in serious loss of oat production. In August 2018, a serious seedling blight of oat (cv. Baiyan 7; about 30-day-old) was observed in the field in Shandan County, Zhangye City, Gansu Province (38.22° N, 101.22° E). More than 20% of oat plants were severely affected. Symptoms included leaf chlorosis and wilt. The root systems of infected plants were black and severely rotted, often with only a small amount of fine root remaining after removal from the soil. Twenty isolations were made from blackened roots on potato dextrose agar (PDA) and five isolations (TM-1, TM-2, TM-3, TM-4 and TM-5) were further purified by a single-spore method (Choi et al. 1999). Each isolate was identical based on preliminary molecular analyses of their DNA sequences of ITS by blast in the NCBI GenBank. The representative isolate TM-2 was selected for sequencing of the RNA polymerase II subunit (RPB2) gene. The isolated colonies were grown on PDA and formed colonies of approximately 62 mm (diameter) in 5 days at 25 ± 1 °C. Colonies exhibited entire margins, the color varied from white to pale yellow, and the sparse aerial mycelium were villous-floccose and cottony. The conidia were falcate, straight to curved, apex pointed or obtuse to subacute, lacking basal differentiation, 0-3-septate, most one-septate, 2.2 to 3.1 × 12.3 to 22.6μm (av.= 2.8 ×17.6; n=50). These morphological characteristics were consistent with previous descriptions of Microdochium (Zhang et al. 2010). Molecular identity was confirmed by sequencing partial sequences of ITS gene (ITS1 and ITS4 primers) (White et al. 1990) and RPB2 regions (RPB2-5f2 and RPB2-7cr) (O’Donnell et al. 2010). Sequences were deposited in GenBank under accessions MN428647 (RPB2) and MN428646 (ITS). Blast search revealed that both of the ITS and RPB2 sequences to be 99% similar to the corresponding sequences of M. nivale(CBS 116205) accession numbers KP859008.1 and KP859117.1. For pathogenicity tests, millet seed-based inoculum of M. nivale was prepared using a modified procedure of Fang et al. (2011). Three-week-old healthy oat seedlings of cv. Baiyan 7 were transplanted into potting mix containing millet seed-based inoculum of M. nivale at a rate of 3%. Control seedlings for comparison were transplanted into pots containing uninoculated potting mix. After 10 days, all the inoculated plants had developed seedling blight symptoms and that were similar to those observed in the field; while control plants remained healthy. The pathogen was reisolated from inoculated plants and identified as M. nivale based on morphological characteristics and the molecular methods described above. To our knowledge, this is the first report of seedling blight of oat caused by M. nivale in China.


Plant Disease ◽  
2021 ◽  
Author(s):  
Chun-Yan Gu ◽  
Rui Pan ◽  
Muhammad Abid ◽  
Hao-Yu Zang ◽  
Xue Yang ◽  
...  

Lavender (Lavandula angustifolia Mill) is an ornamental plant and worldwidely grown for its aromatic and pharmacological qualities. In June 2020, the symptoms of blackleg disease on lavender plants were observed, with more than 50% incidence in Chaohu city (117°38′19.12″N, 31°47′18.94″W) of Anhui Province, China. The disease symptoms progressed from stem wilt and necrosis to prolonged necrosis and bending of leaves, and all infected lavender plants died eventually. Ten necrotic stem lesions werecollectedfrom ten independent plants for the isolation of pathogen. All samples were washed in 70% ethanol for 1 minute, rinsed twice in sterile distilled water and placed on water agar (WA) plates containing 30 mg/liter of kanamycin. All 16 fungal isolates were transferred onto potato dextrose agar (PDA) and incubated at 26°C for 5 days, and all fungal colonies were isolated consistently, which produced redish-gray mycelium at 26°C with a 12-h photoperiod on PDA media. They developed black pycnidia with abundant hyaline, unicellular, oval shaped conidia (4.5 to 5.9 × 2.1 to 2.5 μm) after 14 days. DNA was extracted (10-day-old culture) using the Fungal DNA Mini Kit (Omega Bio-tek, China), according to the manufacturer’s protocol. The internal transcribed spacer (ITS), beta-tubulin (β-tub) and translation elongation factor 1-alpha (tef1-α) genes of three isolates were amplified using the primers: ITS1/ITS4 (White et al. 1990), Bt2a/Bt2b (Glass et al. 1995) and EF1-728F/EF1-986R (Carbone et al. 1999), respectively. The ITS(MT883331), β-tub(MT896891) andtef1-α (MT874165) genes were sequenced and analyzed through BLASTn. The ITS sequence showed 99.81% with Epicoccum sorghinum (GenBank Accession No. MK020690.1). The β-tub and tef1-α showed 100% homology with Epicoccum sorghinum (GenBank AccessionMN554062.1 and MN512426.1), respectively. To complete Koch's postulates, pathogenicity tests were performed by spraying the fungal spore suspension (1×105 CFU/ml) prepared from 14-day-old cultures onto needling wounded stems of 1-year-old potted healthy L. angustifolia plants. The healthy plants were sprayed with sterilized water onto needling wounded stems served as negative control. Wilting and stem necrosis were observed 5 days afterinoculation and incubation in a growth chamber at 26°C, with a 12-h photoperiod. All fungal infected plants died after 10 days, while, the control plants remained healthy. The fungus was re-isolated from the lesions of the inoculated plants and verified. Based on morphological characteristics, sequence analysis and pathogenicity test, the pathogen was identified as E. sorghinum. The pathogen has been observed previously on many plants such as tea (Bao et al. 2019) and taro (Liu et al. 2018), in China. To our knowledge, this is the first report of E. sorghinum causing blackleg disease of lavender in China and worldwide.


Plant Disease ◽  
2021 ◽  
Author(s):  
Romana Anjum ◽  
Iqrar Ahmad Khan ◽  
Mark L. Gleason ◽  
Noumal Hassani

Psidium guajava is a widely grown fruit tree of Asia for food and medicinal purposes. Also being reported to have anti-inflammatory, antimicrobial, antioxidant, antidiarrheal, antimutagenic properties (Somu, 2012). In April 2018, quick decline disease of guava was observed in orchards of Sheikhupura, Lahore, Faisalabad, Kasur and Chiniot districts of Punjab, Pakistan. Approximately 68% of the trees were found declined with mummified fruits. Initial infection symptoms appeared as wilting of leaves, bark discoloration, followed by the leaf drooping, crown area discoloration, bark splitting, mummified fruits, dying of branches and lately whole tree death in weeks to months. The fungus formed a dark brown to black discoloration (3 to 5 cm wide and 7 to 9 cm long) in vascular bundles of P. guajava tree. Sixty-five samples of discolored wood from the main stem were collected, and pathogen was isolated using carrot bait method (Moller and DeVay, 1968). Isolation and purification were done on 2% Malt extract agar (MEA) plates incubated at 25 ± 2 °C in 12 h light and dark period. After 6 days of incubation, fungal hyphae, fruiting structures, sexual & asexual spores were observed on MEA plates. Black globose to subglobose ascomata with bases (151-) 200 (-278) µm in diameter with long neck (511-) 535 to 600 (-671) µm long, (23-) 28 to 39 (-47) µm wide at base, (13-) 13- 19 (-25) µm wide at tip and light brown to hyaline divergent ostiolar hyphae (50µm) were developed and produces hat-shaped hyaline ascospores 3 to 5 µm long and 6-7 µm (with sheath) and 4 µm (without sheath) wide. After 7 days, initially white mycelium turned into olivaceous green and produced primary phialidic conidiophore with emerging primary cylindrical hyaline conidia (7 to 12 × 4 to 6 µm), secondary conidiophore with emerging chain of secondary barrel-shaped hyaline conidia (9-) 10 to 12 (-13) µm long × (5-) 5 to 9 (-11) µm wide and dark brown dematiaceous chlamydospores conidia (12 ×10 µm) were observed. All morphological characteristics were consistent to the description of Ceratocystis manginecans (Van Wyk, et al., 2007). For further confirmation, from a purified isolate GWD10, genomic DNA was extracted. The internal transcribed spacer (ITS) and translation elongation factor 1-alpha (TEF 1-α) region were amplified with primer pairs ITS1/ITS4 and EF1/EF2 (Jacobs et al., 2004; White et al., 1990) respectively. Generated sequences (Accession Nos. MN 365128 & MT952139) on BLAST analysis showed 100% homology for ITS and TEF with Ceratocystis manginecans (Accession No., KC261852 CMW 13582 Voucher, NR-119532.1 type material, MH863135; EF433317, respectively) reported from Oman and Pakistan (Van Wyk et al., 2007 & Vu et al., 2019). For pathogenicity test, one-year-old healthy P. guajava plants were inoculated by making a T-shaped slit of 5 × 7.5 mm in the bark. Two weeks old cultures of GWD10, 5-mm mycelial discs were aseptically transferred and covered with moistened sterilized cotton swab followed parafilm to maintain humidity. Fifteen plants were inoculated with fungal cultures and five plants were inoculated with MEA plugs as controls. All plants were maintained at 25 ± 2 °C with 80 ± 5% relative humidity (RH) in greenhouse Initial bark discoloration developed after 14 days of inoculation. After 40 days of inoculation plants started wilting and dying, similar to the symptoms were observed in naturally infected trees. Control plants remained asymptomatic. To fulfill Koch’s pustulates, the same pathogen was re-isolated from the test plants and identified on morphological features to GWD10. The pathogen has been associated with mango decline in Oman and Pakistan (Van Wyk et al., 2007), acacia wilt in Indonesia (Harrington et al., 2015) and siris wilt in Pakistan (Razzaq et al., 2020). P guajava is an important fruit and medicinal plant, and the infection of C. manginecans is a great concern to the producers of P. guajava (Harrington et al., 2015; Huang et al., 2003). To our knowledge, this is the first report of Ceratocystis manginecans causing quick decline of P. guajava worldwide.


2019 ◽  
Vol 9 (2) ◽  
pp. 91
Author(s):  
Ghea Dotulong ◽  
Stella Umboh ◽  
Johanis Pelealu

Uji Toksisitas Beberapa Fungisida Nabati terhadap Penyakit Layu Fusarium (Fusarium oxysporum) pada Tanaman Kentang (Solanum tuberosum L.) secara In Vitro (Toxicity Test of several Biofungicides in controlling Fusarium wilt (Fusarium oxysporum) in Potato Plants (Solanum tuberosum L.) by In Vitro) Ghea Dotulong1*), Stella Umboh1), Johanis Pelealu1), 1) Program Studi Biologi, FMIPA Universitas Sam Ratulangi, Manado 95115*Email korespondensi: [email protected] Diterima 9 Juli 2019, diterima untuk dipublikasi 10 Agustus 2019 Abstrak Tanaman kentang (Solanum tuberosum L.) adalah salah satu tanaman hortikultura yang sering mengalami penurunan dari segi produksi dan produktivitasnya, akibat adanya serangan penyakit layu yang salah satunya disebabkan oleh Fusarium oxysporum. Tujuan penelitian ini adalah mengidentifikasi toksisitas beberapa fungisida nabati dalam mengendalikan penyakit Layu Fusarium (F. oxysporum) pada tanaman kentang (Solanum tuberosum L.) secara In Vitro. Metode Penelitian yang digunakan yaitu metode umpan beracun. Data dianalisis dengan Rancangan Acak Lengkap (RAL) dengan Analisis Varian (ANAVA) yang dilanjutkan dengan menggunakan metode BNT (Beda Nyata Terkecil). Hasil Penelitian, diperoleh nilai toksisitas fungisida nabati tertinggi yaitu pada ekstrak daun sirsak dengan nilai HR (69,44%), kategori berpengaruh, ditandai dengan diameter koloni 2,75 cm (100ppm) dan yang terendah toksisitasnya yaitu pada ekstrak daun jeruk purut dengan nilai HR (49,81%), kategori cukup berpengaruh ditandai dengan diameter koloni 3,75 cm (25ppm). Semakin tinggi konsentrasi yang diujikan maka semakin tinggi toksisitas dari fungisida nabati yang diberikan.Kata Kunci: fungisida nabati, Fusarium oxysporum, tanaman kentang, In Vitro Abstract Potato plants (Solanum tuberosum L.) is one of the horticulture plants which often decreases in terms of production and productivity, due to the attack of wilt, one of which is caused by Fusarium oxysporum. The purpose of this study was to determine the toxicity of several biofungicides in controlling Fusarium wilt (F. oxysporum) in potato plants (Solanum tuberosum L.) in Vitro. The research method used was the In Vitro method with the poison bait method. Data were analyzed by Completely Randomized Design with Variant Analysis (ANAVA), followed by the BNT method. The results showed that the highest biofungicide toxicity value was soursop leaf extract with HR values (69.44%), influential categories, characterized by colony diameter 2.75 cm (100ppm) and the lowest toxicity, namely in kaffir lime leaf extract with a value of HR (49.81%), quite influential category was characterized by colony diameter of 3.75 cm (25ppm). The higher the concentration tested, the higher the toxicity of the biofungicide given.Keywords: biofungicides, Fusarium oxysporum, Potato Plants, In Vitro.


Plant Disease ◽  
2006 ◽  
Vol 90 (8) ◽  
pp. 1109-1109 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
M. L. Gullino

Lamb's lettuce or corn salad (Valerianella olitoria) is increasingly grown in Italy and used primarily in the preparation of mixed processed salad. In the fall of 2005, plants of lamb's lettuce, cv Trophy, exhibiting a basal rot were observed in some commercial greenhouses near Bergamo in northern Italy. The crown of diseased plants showed extensive necrosis, progressing to the basal leaves, with plants eventually dying. The first symptoms, consisting of water-soaked zonate lesions on basal leaves, were observed on 30-day-old plants during the month of October when temperatures ranged between 15 and 22°C. Disease was uniformly distributed in the greenhouses, progressed rapidly in circles, and 50% of the plants were affected. Diseased tissue was disinfested for 1 min in 1% NaOCl and plated on potato dextrose agar amended with 100 μg/liter of streptomycin sulfate. A fungus with the morphological characteristics of Rhizoctonia solani was consistently and readily isolated and maintained in pure culture after single-hyphal tipping (3). The five isolates of R. solani, obtained from affected plants successfully anastomosed with tester isolate AG 4, no. RT 31, received from R. Nicoletti of the Istituto Sperimentale per il Tabacco, Scafati, Italy (2). The hyphal diameter at the point of anastomosis was reduced, and cell death of adjacent cells occurred (1). Pairings were also made with AG 1, 2, 3, 5, 7, and 11 with no anastomoses observed between the five isolates and testers. For pathogenicity tests, the inoculum of R. solani (no. Rh. Vale 1) was grown on autoclaved wheat kernels at 25°C for 10 days. Plants of cv. Trophy were grown in 10-liter containers (20 × 50 cm, 15 plants per container) on a steam disinfested substrate (equal volume of peat and sand). Inoculations were made on 20-day-old plants by placing 2 g of infected wheat kernels at each corner of the container with 3 cm as the distance to the nearest plant. Plants inoculated with clean wheat kernels served as controls. Three replicates (containers) were used. Plants were maintained at 25°C in a growth chamber programmed for 12 h of irradiation at a relative humidity of 80%. The first symptoms, consisting of water-soaked lesions on the basal leaves, developed 5 days after inoculation with crown rot and plant kill in 2 weeks. Control plants remained healthy. R. solani was consistently reisolated from infected plants. The pathogenicity test was carried out twice with similar results. This is, to our knowledge, the first report of R. solani on lamb's lettuce in Italy as well as worldwide. The isolates were deposited at the AGROINNOVA fungal collection. The disease continues to spread in other greenhouses in northern Italy. References: (1) D. Carling. Rhizoctonia Species: Pages 37–47 in: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. B. Sneh et al., eds. Kluwer Academic Publishers, the Netherlands, 1996. (2) J. Parmeter et al. Phytopathology, 59:1270, 1969. (3) B. Sneh et al. Identification of Rhizoctonia Species. The American Phytopathological Society, St. Paul, MN, 1996.


Sign in / Sign up

Export Citation Format

Share Document