scholarly journals Differential Effect of SdhB Gene Mutations on the Sensitivity to SDHI Fungicides in Botrytis cinerea

Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 118-122 ◽  
Author(s):  
Thomas Veloukas ◽  
Anastasios N. Markoglou ◽  
George S. Karaoglanidis

Succinate dehydrogenase inhibiting (SDHI) fungicides constitute a relatively novel fungicide group used for gray mold control caused mainly by Botrytis cinerea. Shortly after registration, resistance was observed in fungal populations that correlated with several mutations in the succinate dehydrogenase complex (complex II). In the current study, 30 B. cinerea isolates possessing five different mutations at three different codons of SdhB (P225F, N230I, and H272L/R/Y) were characterized for their sensitivities to eight SDHI fungicides. The results show different sensitivities and cross-resistance patterns between structurally different SDHIs. P225F mutants were resistant in vitro to all SDHIs tested. Similarly, isolates possessing the H272L mutation were highly resistant to boscalid but showed low to moderate levels of resistance to other SDHIs. The N230I mutants were moderately resistant to boscalid, fluopyram, and fluxapyroxad and showed low resistance levels to isopyrazam, bixafen, fenfuram, benodanil, and carboxin. The H272R mutants showed moderate levels of resistance to boscalid and low resistance levels to isopyrazam, fenfuram, and carboxin but remained sensitive to fluopyram, bixafen, fluxapyroxad, and benodanil. Similarly, the H272Y showed moderate levels of resistance to boscalid and very low resistance levels to isopyrazam, bixafen, fenfuram, and carboxin but showed increased sensitivity to benodanil and fluopyram. Boscalid provided moderate to high control of H272R/Y and N230I mutants in detached fruit assays but provided little control against the H272L and P225F mutants. In contrast, fluopyram controlled H272R/Y mutants and provided moderate levels of control toward H272L, N230I, and P225F mutants. Our findings suggest that sensitivity to SDHIs may vary greatly, dependent on the point mutation in the sdhb subunit.

Plant Disease ◽  
2014 ◽  
Vol 98 (4) ◽  
pp. 532-539 ◽  
Author(s):  
Achour Amiri ◽  
Stacy M. Heath ◽  
Natalia A. Peres

Succinate dehydrogenase inhibitors (SDHIs) constitute a mainstay in management of gray mold caused by Botrytis cinerea in strawberry and several other crops. In this study, we investigated the risks of resistance development to three newer SDHIs (i.e., fluopyram, fluxapyroxad, and penthiopyrad) and their cross-resistance with the previously registered boscalid. We investigated the mutations in the SdhB subunit and evaluated their impact on microbial fitness in field populations of B. cinerea. Amino acid substitutions associated with resistance to SDHIs were detected at three codons of the SdhB subunit (BH272R/Y/L, BP225F, and BN230I) in the succinate dehydrogenase gene of field isolates from Florida. The BH272R, BH272Y, BH272L, BP225F, and BN230I mutations were detected at frequencies of 51.5, 28.0, 0.5, 2.5, and 4%, respectively. Strong cross-resistance patterns were evident between boscalid and fluxapyroxad and penthiopyrad but not with fluopyram, except in BH272L, BP225F, and BN230I mutants. All five mutations conferred moderate to very high resistance to boscalid whereas the BH272Y conferred resistance to fluxapyroxad and penthiopyrad. The BH272L, BN230I, and BP225F mutations conferred high resistance to all four SDHIs tested. Resistance monitoring following the first use of penthiopyrad in strawberry fields in Florida in 2013 suggests potential for quick selection for highly resistant populations and warrants careful use of the newer SDHIs. No evidence of major fitness costs due to the mutations in the SdhB subunit was found, which indicates the potential ability of the mutants to survive and compete with wild-type isolates. Our study suggests high risks for rapid widespread occurrence of B. cinerea populations resistant to the novel SDHIs unless appropriate rotation strategies are implemented immediately upon registration.


2020 ◽  
Vol 110 (2) ◽  
pp. 327-335
Author(s):  
Achour Amiri ◽  
Adrian I. Zuniga ◽  
Natalia A. Peres

Succinate dehydrogenase inhibitors (SDHIs) are an essential group of fungicides for managing gray mold, caused by Botrytis cinerea, in numerous crops. Resistance to boscalid, an early-generation SDHI, is widespread worldwide and was linked to mutations in the iron-sulfur protein encoding the SdhB subunit of the SDH complex. Herein, we report on four simultaneous dependent mutations at codons 85 (G85A), 93 (I93V), 158 (M158V), and 168 (V168I) of the membrane-anchored SdhC subunit of B. cinerea. Isolates without and with mutations in SdhC were referred to as C− and C+ genotypes, respectively. The C+ genotype was found in all the five surveyed hosts from different U.S. regions but its frequency was higher, 25 to 40%, in the tree fruit isolates compared with 12 to 25% in the small fruit populations. The four SdhC mutations were found in isolates without mutations in SdhB or with mutations known to confer resistance to the SDHIs in SdhB. However, the frequency of C+ isolates was significantly higher in the SdhB wild-type isolates, which suggests that SDHI sprays may have played a role in selecting for the C− over the C+ genotype. Field C+ isolates exhibited reduced sensitivity to fluopyram and increased sensitivity to boscalid and penthiopyrad in vitro and on detached fruit. Homology modeling confirmed the positioning of the four mutations in the ubiquinone-binding pocket. The SdhCG85A is found in the proximal ubiquinone binding site and SdhCM158V is positioned in the iron sulfur protein interface next to the [3Fe-4S] cluster, whereas SdhCI93V is positioned next to the heme b with vital functions in the SDH enzyme. Beside the differential sensitivity to the SDHIs, these mutations caused a significant fitness cost in the C+ isolates including sporulation and increased sensitivity to reactive oxygen species. The presence of Botrytis populations differentially sensitive to the SDHIs suggests increased risks for resistance development but also opens up new perspective for future gray mold management using different SDHI fungicides.


2018 ◽  
Vol 19 (1) ◽  
pp. 45-45
Author(s):  
Dolores Fernández-Ortuño ◽  
Alejandra Vielba-Fernández ◽  
Alejandro Pérez-García ◽  
Juan A. Torés ◽  
Antonio de Vicente

Botrytis cinerea Pers. is an important fungal pathogen responsible for gray mold, one of the most economically important diseases of strawberry (Fragaria × ananassa) worldwide. The primary disease management strategy involves the application of different classes of fungicides, including the sterol biosynthesis inhibitor class III fungicide fenpyrazamine. In 2014 and 2015, strawberries affected with gray mold symptoms were collected from eight locations in Huelva, where fenhexamid had been used extensively. Twenty-five B. cinerea single-spore isolates were examined to determine EC50 values and to determine a discriminatory dose to monitor fenpyrazamine resistance in the field in future studies. The in vitro tests divided the isolates into two groups: 15 sensitive (EC50 from 0.02 to 1.3 μg/ml) and 10 resistant (EC50 from 50.1 to 172.6 μg/ml), which showed cross-resistance with fenhexamid. Performance of fenpyrazamine in in vivo studies was also carried out. Only the fenpyrazamine-resistant isolates developed gray mold on the fungicide-treated fruit. This is the first report of fenpyrazamine resistance in B. cinerea from strawberry fields in Spain and cross-resistance with fenhexamid.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 81-85 ◽  
Author(s):  
Dolores Fernández-Ortuño ◽  
Fengping Chen ◽  
Guido Schnabel

Chemical control of gray mold of strawberry caused by Botrytis cinerea is essential to prevent pre- and postharvest fruit decay. For more than 10 years, the anilinopyrimidine (AP) cyprodinil and the phenylpyrrole fludioxonil (Switch 62.5WG) have been available to commercial strawberry producers in the United States for gray mold control. Both active ingredients are site-specific inhibitors and, thus, prone to resistance development. In this study, 217 single-spore isolates of B. cinerea from 11 commercial strawberry fields in North and South Carolina were examined for sensitivity to both fungicides. Isolates that were sensitive (53%), moderately resistant (30%), or resistant (17%) to cyprodinil were identified based on germ tube inhibition at discriminatory doses of cyprodinil at 1 and 25 mg/liter at 10 of the 11 locations. None of the isolates was fludioxonil resistant. Phenotypes that were moderately resistant or resistant to cyprodinil were not associated with fitness penalties for mycelial growth rate, spore production, or osmotic sensitivity. Detached fruit assays demonstrated cross resistance between the two AP fungicides cyprodinil and pyrimethanil, and that isolates that were characterized in vitro as moderately resistant or resistant were equivalent in pathogenicity on fruit sprayed with pyrimethanil (currently the only AP registered in strawberry as a solo formulation). This suggests that the in vitro distinction of moderately resistant and resistant isolates is of little if any field relevance. The absence of cross-resistance with fludioxonil, iprodione, cycloheximide, and tolnaftate indicated that multidrug resistance in the form of multidrug resistance phenotypes was unlikely to be involved in conferring resistance to APs in our isolates. Implications for resistance management and disease control are discussed.


2017 ◽  
Vol 107 (3) ◽  
pp. 362-368 ◽  
Author(s):  
Wayne M. Jurick ◽  
Otilia Macarisin ◽  
Verneta L. Gaskins ◽  
Eunhee Park ◽  
Jiujiang Yu ◽  
...  

Botrytis cinerea causes gray mold and is an economically important postharvest pathogen of fruit, vegetables, and ornamentals. Fludioxonil-sensitive B. cinerea isolates were collected in 2011 and 2013 from commercial storage in Pennsylvania. Eight isolates had values for effective concentrations for inhibiting 50% of mycelial growth of 0.0004 to 0.0038 μg/ml for fludioxonil and were dual resistant to pyrimethanil and thiabendazole. Resistance was generated in vitro, following exposure to a sublethal dose of fludioxonil, in seven of eight dual-resistant B. cinerea isolates. Three vigorously growing B. cinerea isolates with multiresistance to postharvest fungicides were further characterized and found to be osmosensitive and retained resistance in the absence of selection pressure. A representative multiresistant B. cinerea strain caused decay on apple fruit treated with postharvest fungicides, which confirmed the in vitro results. The R632I mutation in the Mrr1 gene, associated with fludioxonil resistance in B. cinerea, was not detected in multipostharvest fungicide-resistant B. cinerea isolates, suggesting that the fungus may be using additional mechanisms to mediate resistance. Results from this study show for the first time that B. cinerea with dual resistance to pyrimethanil and thiabendazole can also rapidly develop resistance to fludioxonil, which may pose control challenges in the packinghouse environment and during long-term storage.


FLORESTA ◽  
2013 ◽  
Vol 43 (2) ◽  
pp. 225
Author(s):  
Miriam Machado Cunico ◽  
Celso Garcia Auer ◽  
Marlon Wesley Machado Cunico ◽  
Obdulio Gomes Miguel ◽  
Patricio Peralta Zamora ◽  
...  

 Extratos etanólicos de anestesia, Ottonia martiana Miq., foram reavaliados quanto à inibição do crescimento micelial dos fungos Cylindrocladium spathulatum (pinta-preta da erva-mate) e Botrytis cinerea (mofo-cinzento do eucalipto), por meio do planejamento fatorial. A ocorrência de decomposição de bioativos no processo de autoclavagem também foi investigada, por meio de teste de eficiência de extratos filtrados (filtro Millipore) e esterilizados (autoclave) no controle dos fitopatógenos, nas concentrações de 1, 10, 100 e 1000 ppm. Os extratos etanólicos filtrado e esterilizado inibiram o crescimento micelial dos fungos e foram mais ativos frente a B. cinerea.O extrato filtrado exibiu maior potencial antifúngico que o extrato esterilizado. O processo de esterilização por autoclavagem causou pequena decomposição dos bioativos presentes no extrato de anestesia.Palavras-chave: Anestesia; mofo-cinzento; pinta-preta. Abstract Fungitoxic potential of ethanolic extracts of anestesia in the control of phytopathogenic diseases. The antifungal potential of anestesia, Ottonia martiana Miq. was reassessed by factorial design, in vitro testing of fungal mycelial growth compared to the pathogenic isolates Cylindrocladium spathulatum, causal agent of black spot onyerba mate, and Botrytis cinerea causal agent of gray-mold on eucalypts. Occurrence of decomposition of bioactive of the autoclaving process was investigated using foliar detached test compared to the pathogens (1000 ppm). Ethanolic extracts - EBEtOH (filtered and autoclaved) inhibited the mycelial growth of C. spathulatum and B. cinerea (1000 ppm) and were more pronounced against B. cinerea (43.6 % and 68.9 %). EBEtOH filtered (0.22 µm) presented higher activity than EBEtOH autoclaved (C. spathulatum: 52.8 % and 43.6 %, B. cinerea: 68.9 % and 43.6 %), suggesting little decomposition ofbioactive after autoclaving. EBEtOH filtrate presented potential inhibition of 28 % in eucalypt leaves against B. cinerea.  Keywords: Ottonia martiana; black spot; gray-mold.


FLORESTA ◽  
2013 ◽  
Vol 43 (1) ◽  
pp. 145 ◽  
Author(s):  
José Antonio Sbravatti Junior ◽  
Celso Garcia Auer ◽  
Ida Chapaval Pimentel ◽  
Álvaro Figueredo dos Santos ◽  
Bruno Schultz

   O Eucalyptus benthamii é uma das principais espécies de eucalipto plantadas na região Sul do Brasil, por sua resistência a geadas e por seu uso na produção florestal de madeira para fins energéticos. Na produção de mudas, uma das principais doenças ocorrentes em viveiros é o mofo-cinzento, causado pelo fungo Botrytis cinerea. Uma das alternativas para o controle dessa doença é o controle biológico com fungos endofíticos, os quais podem competir com os patógenos foliares de mudas de eucalipto. O objetivo deste trabalho foi isolar os fungos endofíticos provenientes de mudas de E. benthamii, identificá-los e selecioná-los para o controle de B. cinerea. Eles foram isolados do interior de tecidos vegetais desinfectados, identificados de acordo com critérios macro e micromorfológicos e classificados a partir de testes de controle biológico in vitro. Os resultados evidenciaram o potencial antagonista dos fungos Aspergillus sp., Penicillium sp. e Trichoderma sp. Nenhum desses fungos causou lesões em mudas de E. benthamii.Palavras-chave: Mofo-cinzento; eucalipto; viveiro.AbstractIn vitro selection of endophytes for biological control of Botrytis cinerea in Eucalyptus benthamii. Eucalyptus benthamii is one of the main eucalypt species planted in Southern Brazil, due to its resistance to frost and its use in the production of forest wood for energy purposes. During the production of seedlings, the main disease occurring in forest nurseries is gray-mold caused by the fungus Botrytis cinerea. One alternative for control this disease is biological control with fungal endophytes, which can compete with the foliar pathogens of eucalypt seedlings. The objective of this study was to isolate endophytic fungi from seedlings of Eucalyptus benthamii, identify and select them for B. cinerea control. These were isolated from the interior of disinfected plant tissues, identified according to macro and micromorphological criteria, and based on tests of biological control in vitro. The results revealed the potential antagonist of Aspergillus sp., Penicillium sp. and Trichoderma sp. No fungi caused lesions in E. benthamii seedlings.Keywords: Gray-mold; eucalypt; nursery.    


2011 ◽  
Vol 101 (12) ◽  
pp. 1433-1445 ◽  
Author(s):  
Anne-Sophie Walker ◽  
Angélique Gautier ◽  
Johann Confais ◽  
Daniel Martinho ◽  
Muriel Viaud ◽  
...  

Botrytis cinerea is a major crop pathogen infesting >220 hosts worldwide. A cryptic species has been identified in some French populations but the new species, B. pseudocinerea, has not been fully delimited and established. The aim of this study was to distinguish between the two species, using phylogenetic, biological, morphological, and ecological criteria. Multiple gene genealogies confirmed that the two species belonged to different, well-supported phylogenetic clades. None of the morphological criteria tested (spore size, germination rate, or mycelial growth) was able to discriminate between these two species. Sexual crosses between individuals from the same species and different species were carried out. Only crosses between individuals from the same species were successful. Moreover, population genetics analysis revealed a high level of diversity within each species and a lack of gene flow between them. Finally, a population survey over time showed that B. cinerea was the predominant species but that B. pseudocinerea was more abundant in spring, on floral debris. This observation could not be explained by temperature adaptation in tests carried out in vitro or by aggressiveness on tomato or bean leaves. This study clearly establishes that B. cinerea and B. pseudocinerea constitute a complex of two cryptic species living in sympatry on several hosts, including grapevine and blackberry. We propose several biological or molecular tools for unambiguous differentiation between the two species. B. pseudocinerea probably makes a negligible contribution to gray mold epidemics on grapevine. This new species has been deposited in the MycoBank international database.


Plant Disease ◽  
2020 ◽  
Author(s):  
Shengming Liu ◽  
Liuyuan Fu ◽  
Huanhuan Tan ◽  
Jia Jiang ◽  
Zhiping Che ◽  
...  

Grey mold, caused by the fungus Botrytis cinerea Pers ex Fr., is one of the most destructive spoilage diseases, severely affecting tomato production in Henan Province, China. Spraying fungicides from the flowering to the harvest stage is a necessary measure to reduce losses associated with B. cinerea infection. However, B. cinerea has developed resistance to fungicides in many countries. Boscalid is a succinate dehydrogenase inhibitor (SDHI) fungicide, and was registered for the control of grey mold. In this study, a total of 269 B. cinerea isolates were collected from tomato in commercial greenhouses in different locations of Henan Province, in 2014 and 2015. The sensitivity and resistance of B. cinerea field isolates were determined based on mycelial growth. The effective concentration 50 (EC50) ranged from 0.11 to 15.92 μg ml−1 and 0.16 to 8.54 μg ml−1, in 2014 and 2015, respectively. The frequency of low resistance to boscalid was 12.6% and 7.6%, and moderate resistance were 2.7% and 1.3%, in 2014 and 2015, respectively. No high-resistant isolates were found in Henan Province, China. Mycelial growth, mycelial dry weight, spore production, and pathogenicity were not significantly different between resistant and sensitive phenotypes of the B. cinerea isolates. The results of cross-resistance test showed no correlation between boscalid and carbendazim, procymidone, pyrimethanil, fluazinam or fluopyram. In this study, the succinate dehydrogenase gene B (sdhB), C (sdhC), and D (sdhD) were analyzed and compared in sensitive, low and moderately resistant B. cinerea isolates to boscalid. Results showed point mutations occurred simultaneously at sdhC amino acid positions 85 (G85A), 93 (I93V), 158 (M158V), and 168 (V168I) in 4 out of 10 sensitive isolates, 23 out of 26 low and 5 out of 5 moderately resistant B. cinerea isolates to boscalid. No point mutations were found in the sdhB and sdhD genes of all isolates. Furthermore, no point mutations were found in sdhB, sdhC and sdhD genes in 3 out of 26 low resistant B. cinerea isolates to boscalid. Therefore, we speculate the simultaneous point mutations in the sdhC gene may not be related to the resistance of B. cinerea to boscalid. These results suggested that there might be a substitution mechanism for the resistance of B. cinerea to the SDHI fungicide boscalid.


Sign in / Sign up

Export Citation Format

Share Document