scholarly journals First Report of Fenpyrazamine Resistance in Botrytis cinerea from Strawberry Fields in Spain

2018 ◽  
Vol 19 (1) ◽  
pp. 45-45
Author(s):  
Dolores Fernández-Ortuño ◽  
Alejandra Vielba-Fernández ◽  
Alejandro Pérez-García ◽  
Juan A. Torés ◽  
Antonio de Vicente

Botrytis cinerea Pers. is an important fungal pathogen responsible for gray mold, one of the most economically important diseases of strawberry (Fragaria × ananassa) worldwide. The primary disease management strategy involves the application of different classes of fungicides, including the sterol biosynthesis inhibitor class III fungicide fenpyrazamine. In 2014 and 2015, strawberries affected with gray mold symptoms were collected from eight locations in Huelva, where fenhexamid had been used extensively. Twenty-five B. cinerea single-spore isolates were examined to determine EC50 values and to determine a discriminatory dose to monitor fenpyrazamine resistance in the field in future studies. The in vitro tests divided the isolates into two groups: 15 sensitive (EC50 from 0.02 to 1.3 μg/ml) and 10 resistant (EC50 from 50.1 to 172.6 μg/ml), which showed cross-resistance with fenhexamid. Performance of fenpyrazamine in in vivo studies was also carried out. Only the fenpyrazamine-resistant isolates developed gray mold on the fungicide-treated fruit. This is the first report of fenpyrazamine resistance in B. cinerea from strawberry fields in Spain and cross-resistance with fenhexamid.

Plant Disease ◽  
2011 ◽  
Vol 95 (11) ◽  
pp. 1481-1481
Author(s):  
F. P. Chen ◽  
X. L. Liu ◽  
X. P. Li ◽  
G. Schnabel

Botrytis cinerea Pers.:Fr., is a necrotrophic fungus with a broad host range that causes gray mold on hundreds of plant species (2). Control of gray mold mainly depends on fungicides, including the dicarboxamide iprodione. Thirty-nine diseased blackberry fruit were collected from four orchards in South Carolina and the sensitivity of single-spore isolates to iprodione was examined by Spiral Plater assays (1) on potato dextrose agar (PDA). Briefly, a 5.3 cm long paper strip containing mycelia was placed along the concentration gradient of the PDA and 50% inhibition (EC50 value) was calculated after 2 days of incubation with the Spiral Gradient Endpoint (SGE) software (Spiral Biotech, Norwood, MA). Each isolate was tested in duplicates. Sensitivity ranged from 0.043 to 2.596 μg/ml, with a maximum resistance factor of 60.4. Isolates with EC50 values greater than 2 μg/ml were found in two orchards. Those isolates represented 40 and 7.1% of the total isolates from each orchard. Two isolates with high (EC50 value of 2.596 μg/ml) and low (EC50 value of 0.062 μg/ml) values were chosen to determine the efficacy of iprodione formulated product Rovral 4 Fl (Bayer CropSciences, Research Triangle Park, NC) on detached apple fruit. Fifteen apples were used for each isolate and experiment. Each fruit was wounded on the surface in three locations with a sterile syringe and inoculated with 15 μl of a spore suspension (106 conidia/ml) at the wounded sites. Rovral was applied at the recommended label rate either 24 h before (protective treatment) or 48 h after inoculation (curative treatment). The experiment was conducted three times. Blackberry fruit were not found suitable for this assay because of persistent contamination problems likely from latent infections of a symptomatic fruit. Disease incidence and lesion diameter were recorded 7 days after incubation. Disease incidence following inoculation of the sensitive and resistant isolates on non-fungicide-treated fruit was 100 and 86.7%, respectively. Disease incidence on fungicide-treated apples was 4.4% for the sensitive isolate and 75.6% for the resistant isolate with corresponding mean lesion areas of 0.36 mm and 9.37 mm, respectively. Both isolates were controlled effectively in protective treatments, however, indicating low levels of resistance. To our knowledge, this is the first report of iprodione resistance in B. cinerea from blackberry or any other field-grown crop in South Carolina. This finding adds to a study from 1999 (3) documenting resistance to the dicarboxamide fungicide vinclozolin in B. cinerea collected from ornamentals in South Carolinian greenhouses and suggests that resistance to iprodione needs to be considered in the design of gray mold control strategies in commercial blackberry orchards. No cross resistance between the phenylpyrrole fludioxonil and iprodione was found. References: (1) H. Forster et al. Phytopathology 94:163, 2004. (2) B. Williamson et al. Mol. Plant Pathol. 8:561. 2007. (3) L. F. Yourman and S. N. Jeffers. Plant Dis. 83:569, 1999.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 81-85 ◽  
Author(s):  
Dolores Fernández-Ortuño ◽  
Fengping Chen ◽  
Guido Schnabel

Chemical control of gray mold of strawberry caused by Botrytis cinerea is essential to prevent pre- and postharvest fruit decay. For more than 10 years, the anilinopyrimidine (AP) cyprodinil and the phenylpyrrole fludioxonil (Switch 62.5WG) have been available to commercial strawberry producers in the United States for gray mold control. Both active ingredients are site-specific inhibitors and, thus, prone to resistance development. In this study, 217 single-spore isolates of B. cinerea from 11 commercial strawberry fields in North and South Carolina were examined for sensitivity to both fungicides. Isolates that were sensitive (53%), moderately resistant (30%), or resistant (17%) to cyprodinil were identified based on germ tube inhibition at discriminatory doses of cyprodinil at 1 and 25 mg/liter at 10 of the 11 locations. None of the isolates was fludioxonil resistant. Phenotypes that were moderately resistant or resistant to cyprodinil were not associated with fitness penalties for mycelial growth rate, spore production, or osmotic sensitivity. Detached fruit assays demonstrated cross resistance between the two AP fungicides cyprodinil and pyrimethanil, and that isolates that were characterized in vitro as moderately resistant or resistant were equivalent in pathogenicity on fruit sprayed with pyrimethanil (currently the only AP registered in strawberry as a solo formulation). This suggests that the in vitro distinction of moderately resistant and resistant isolates is of little if any field relevance. The absence of cross-resistance with fludioxonil, iprodione, cycloheximide, and tolnaftate indicated that multidrug resistance in the form of multidrug resistance phenotypes was unlikely to be involved in conferring resistance to APs in our isolates. Implications for resistance management and disease control are discussed.


Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 848-848 ◽  
Author(s):  
D. Fernández-Ortuño ◽  
P. K. Bryson ◽  
A. Grabke ◽  
G. Schnabel

Gray mold caused by Botrytis cinerea Pers.:Fr. is one of the most economically important diseases of cultivated strawberry (Fragaria × ananassa) worldwide. Control of gray mold mainly depends on fungicides, including the phenylpyrrole fludioxonil, which is currently marketed in combination with cyprodinil as Switch 62.5WG (Syngenta Crop Protection, Research Triangle Park, Raleigh, NC). In 2012, 790 strains of B. cinerea were collected from 76 strawberry fields in eight states, including Arkansas, Florida, Georgia, Kansas, Maryland, North Carolina, South Carolina, and Virginia. Strains were collected from sporulating flowers and fruit and sensitivity to fludioxonil was determined using a conidial germination assay as previously described (2). Only one isolate from a farm located in Westmoreland County, Virginia, grew on medium amended with the discriminatory dose of 0.1 μg/ml fludioxonil and was therefore considered low resistant. The isolate did not grow on 10 μg/ml. All other 789 isolates did not grow at either of the two doses. This assay was repeated twice with a single-spore culture of the same strain. In both cases, residual growth was observed on the fludioxonil-amended medium of 0.1 μg/ml. The single spore isolate was confirmed to be B. cinerea Pers. using cultural and molecular tools as described previously (1). To assess resistance in vivo, commercially grown ripe strawberry fruit were rinsed with sterile water, dried, placed into plastic boxes (eight strawberries per box for each of the three replicates per treatment), and sprayed 4 h prior to inoculation with either water or 2.5 ml/liter of fludioxonil (Scholar SC, Syngenta) to runoff using a hand mister. This dose reflects the rate recommended for gray mold control according to the Scholar label. Each fruit was stabbed at three equidistant points, each about 1 cm apart and 1 cm deep using a syringe tip. Wounds were injected with a 30-μl droplet of conidia suspension (106 spores/ml) of either 5 sensitive or the resistant isolate. Control fruit were inoculated with water. After inoculation, the fruit were kept at 22°C for 4 days. In two independent experiments, sensitive and low resistant isolates were indistinguishable in pathogenicity on detached, unsprayed fruit. The low resistant isolate developed gray mold disease on all treated and untreated fruit (100% disease incidence) as determined by the absence or presence of gray mold symptoms. The sensitive isolates only developed disease on untreated fruit. The EC50 values, determined in microtiter assays with concentrations of 0.01, 0.03, 0.1, 0.3, 1, 3, and 10 μg/ml fludioxonil, were 0.01 μg/ml for the sensitive isolates and 0.26 μg/ml for the resistant isolate. To our knowledge, this is the first report of fludioxonil resistance in B. cinerea from strawberry in North America. Our monitoring results indicate that resistance is emerging 10 years after the introduction of fludioxonil and stress the importance of chemical rotation for gray mold control. References: (1) X. P. Li et al. Plant Dis. 96:1634, 2012. (2) R. W. S. Weber and M. Hahn. J. Plant Dis. Prot. 118:17, 2011.


Biomolecules ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 582 ◽  
Author(s):  
Khamis Youssef ◽  
Sergio Ruffo Roberto ◽  
Admilton G. de Oliveira

Potassium bicarbonate (PB), calcium chelate (CCh), and sodium silicate (SSi) have been extensively used as antifungal generally recognized as safe (GRAS) compounds against plant pathogenic fungi. In this research, in in vitro tests, the radial growth, conidial germination, and germ tube elongation of Botrytis cinerea was completely inhibited at 0.3% of PB, SSi, and CCh. In in vivo tests, application of PB, SSi, and CCh completely inhibited the occurrence of gray mold incidence of inoculated ‘Italia’ grape berries at concentrations of 1.0, 0.8, and 0.8%, respectively. In order to investigate the detailed mechanisms by which salts exhibited antifungal activity, we analyzed their influence on morphological changes by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and also on reactive species of oxygen (ROS), mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) content. Defects such as malformation and excessive septation were detected on salt-treated hyphae morphology observed by SEM. The internal structure of conidia treated or not with salt solutions was examined by TEM. In treated conidia, most of the conidia were affected and cellular vacuolization and cytoplasmic disorganization was observed. For ROS accumulation, a higher increase was observed in fluorescent conidia in presence of PB, SSi, and CCh by 75, 68, and 70% as compared to control, respectively. MMP was significantly decreased after salt application indicating a loss of mitochondria function. Also, luminescence showed that B. cinerea-conidia treated with salts contained less ATP than the untreated conidia. The results obtained herein are a step towards a comprehensive understanding of the mode of action by which salts act as antifungal agents against B. cinerea.


Plant Disease ◽  
2001 ◽  
Vol 85 (12) ◽  
pp. 1264-1270 ◽  
Author(s):  
K. M. Chin ◽  
M. Wirz ◽  
D. Laird

An ascospore germination method was developed and validated to assess the sensitivity of bulk samples of Mycosphaerella fijiensis to trifloxystrobin. Using this method, the sensitivity of 142 ascospore samples from banana plantations not treated with strobilurins was analyzed to establish a baseline of pathogen sensitivity. A bulk method was utilized for monitoring purposes because it avoids potential complications due to the isolation and propagation of single-spore isolates and enables the testing of larger samples. Following intensive use of strobilurins (6 to 11 applications per year) over 4 years, under conditions of high disease pressure and the absence of sanitary measures at a development site in Costa Rica, bulk samples with 50% effective concentration (EC50) resistance factors (RFs) in excess of 500 compared with the mean baseline sensitivity were detected. Single-ascospore isolates derived from spores germinating at the discriminatory dose of 3 μg/ml were also resistant, suggesting that the frequency of resistant individuals in bulk samples could be estimated from the relative numbers of ascospores growing at this dose. The resistance of selected isolates was confirmed in planta. In vitro tests with four resistant and two sensitive single-ascospore isolates collected from different locations and times indicated possible cross-resistance of trifloxystrobin to azoxystrobin, famoxadone, and fenamidone, but not to propiconazole.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jun Guo ◽  
Jin Chen ◽  
Zhao Hu ◽  
Jie Zhong ◽  
Jun Zi Zhu

Cardamine hupingshanensis is a selenium (Se) and cadmium (Cd) hyperaccumulator plant distributed in wetlands along the Wuling Mountains of China (Zhou et al. 2018). In March of 2020, a disease with symptoms similar to gray mold was observed on leaves of C. hupingshanensis in a nursery located in Changsha, Hunan Province, China. Almost 40% of the C. hupingshanensis (200 plants) were infected. Initially, small spots were scattered across the leaf surface or margin. As disease progressed, small spots enlarged to dark brown lesions, with green-gray, conidia containing mold layer under humid conditions. Small leaf pieces were cut from the lesion margins and were sterilized with 70% ethanol for 10 s, 2% NaOCl for 2 min, rinsed with sterilized distilled water for three times, and then placed on potato dextrose agar (PDA) medium at 22°C in the dark. Seven similar colonies were consistently isolated from seven samples and further purified by single-spore isolation. Strains cultured on PDA were initially white, forming gray-white aerial mycelia, then turned gray and produced sclerotia after incubation for 2 weeks, which were brown to blackish, irregular, 0.8 to 3.0 × 1.2 to 3.5 mm (n=50). Conidia were unicellular, globose or oval, colourless, 7.5 to 12.0 × 5.5 to 8.3 μm (n=50). Conidiophores arose singly or in group, straight or flexuous, septate, brownish to light brown, with enlarged basal cells, 12.5 to 22.1 × 120.7 to 310.3 μm. Based on their morphological characteristics in culture, the isolates were putatively identified as Botrytis cinerea (Ellis 1971). Genomic DNA of four representative isolates, HNSMJ-1 to HNSMJ-4, were extracted by CTAB method. The internal transcribed spacer region (ITS), glyceraldehyde-3-phosphate dehydrogenase gene (G3PDH), heat-shock protein 60 gene (HSP60), ATP-dependent RNA helicaseDBP7 gene (MS547) and DNA-dependent RNA polymerase subunit II gene (RPB2) were amplified and sequenced using the primers described previously (Aktaruzzaman et al. 2018) (MW820311, MW831620, MW831628, MW831623 and MW831629 for HNSMJ-1; MW314722, MW316616, MW316617, MW316618 and MW316619 for HNSMJ-2; MW820519, MW831621, MW831627, MW831624 and MW831631 for HNSMJ-3; MW820601, MW831622, MW831626, MW831625 and MW831630 for HNSMJ-4). BLAST searches showed 99.43 to 99.90% identity to the corresponding sequences of B. cinerea strains, such as HJ-5 (MF426032.1, MN448500.1, MK791187.1, MH727700.1 and KX867998.1). A combined phylogenetic tree using the ITS, G3PDH, HSP60 and RPB2 sequences was constructed by neighbor-joining method in MEGA 6. It revealed that HNSMJ-1 to HNSMJ-4 clustered in the B. cinerea clade. Pathogenicity tests were performed on healthy pot-grown C. hupingshanensis plants. Leaves were surface-sterilized and sprayed with conidial suspension (106 conidia/ mL), with sterile water served as controls. All plants were kept in growth chamber with 85% humidity at 25℃ following a 16 h day-8 h night cycle. The experiment was repeated twice, with each three replications. After 4 to 7 days, symptoms similar to those observed in the field developed on the inoculated leaves, whereas controls remained healthy. The pathogen was reisolated from symptomatic tissues and identified using molecular methods, confirming Koch’s postulates. B. cinerea has already been reported from China on C. lyrate (Zhang 2006), a different species of C. hupingshanensis. To the best of our knowledge, this is the first report of B. cinerea causing gray mold on C. hupingshanensis in China and worldwide. Based on the widespread damage in the nursery, appropriate control strategies should be adopted. This study provides a basis for studying the epidemic and management of the disease.


1997 ◽  
Vol 83 (3) ◽  
pp. 1033-1033 ◽  
Author(s):  
Thomas H. Shaffer ◽  
Raymond Foust ◽  
Marla R. Wolfson ◽  
Thomas F. Miller

Shaffer, Thomas H., Raymond Foust IIII, Marla R. Wolfson, and Thomas F. Miller, Jr. Analysis of perfluorochemical elimination from the respiratory system. J. Appl. Physiol. 83(3): 1033–1040, 1997.—We describe a simple apparatus for analysis of perfluorochemicals (PFC) in expired gas and thus a means for determining PFC vapor and liquid elimination from the respiratory system. The apparatus and data analysis are based on thermal conduction and mass transfer principles of gases. In vitro studies were conducted with the PFC vapor analyzer to determine calibration curves for output voltage as a function of individual respiratory gases, respiratory gases saturated with PFC vapor, and volume percent standards for percent PFC saturation (%PFC-Sat) in air. Voltage-concentration data for %PFC-Sat of the vapor from the in vitro tests were accurate to within 2.0% from 0 to 100% PFC-Sat, linear ( r = 0.99, P < 0.001), and highly reproducible. Calculated volume loss of PFC liquid over time correlated well with actual loss by weight ( r = 0.99, P < 0.001). In vivo studies with neonatal lambs demonstrated that PFC volume loss and evaporation rates decreased nonlinearly as a function of time. These relationships were modulated by changes in PFC physical properties, minute ventilation, and postural repositioning. The results of this study demonstrate the sensitivity and accuracy of an on-line method for PFC analysis of expired gas and describe how it may be useful in liquid-assisted ventilation procedures for determining PFC volume loss, evaporation rate, and optimum dosing and ventilation strategy.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9626
Author(s):  
Huiyu Hou ◽  
Xueying Zhang ◽  
Te Zhao ◽  
Lin Zhou

Background Botrytis cinerea causes serious gray mold disease in many plants. This pathogen has developed resistance to many fungicides. Thus, it has become necessary to look for new safe yet effective compounds against B. cinerea. Methods Essential oils (EOs) from 17 plant species were assayed against B. cinerea, of which Origanum vulgare essential oil (OVEO) showed strong antifungal activity, and accordingly its main components were detected by GC/MS. Further study was conducted on the effects of OVEO, carvacrol and thymol in vitro on mycelium growth and spore germination, mycelium morphology, leakages of cytoplasmic contents, mitochondrial injury and accumulation of reactive oxygen species (ROS) of B. cinerea. The control efficacies of OVEO, carvacrol and thymol on tomato gray mold were evaluated in vivo. Results Of all the 17 plant EOs tested, Cinnamomum cassia, Litsea cubeba var. formosana and O. vulgare EOs had the best inhibitory effect on B. cinerea, with 0.5 mg/mL completely inhibiting the mycelium growth of B. cinerea. Twenty-one different compounds of OVEO were identified by gas chromatography–mass spectrometry, and the main chemical components were carvacrol (89.98%), β-caryophyllene (3.34%), thymol (2.39%), α-humulene (1.38%) and 1-methyl-2-propan-2-ylbenzene isopropyl benzene (1.36%). In vitro experiment showed EC50 values of OVEO, carvacrol and thymol were 140.04, 9.09 and 21.32 μg/mL, respectively. Carvacrol and thymol completely inhibited the spore germination of B. cinerea at the concentration of 300 μg/mL while the inhibition rate of OVEO was 80.03%. EC50 of carvacrol and thymol have significantly (P < 0.05) reduced the fresh and dry weight of mycelia. The collapse and damage on B. cinerea mycelia treated with 40 μg/mL of carvacrol and thymol was examined by scanning electron microscope (SEM). Through extracellular conductivity test and fluorescence microscope observation, it was found that carvacrol and thymol led to increase the permeability of target cells, the destruction of mitochondrial membrane and ROS accumulation. In vivo conditions, 1000 μg/mL carvacrol had the best protective and therapeutic effects on tomato gray mold (77.98% and 28.04%, respectively), and the protective effect was significantly higher than that of 400 μg/mL pyrimethanil (43.15%). While the therapeutic and protective effects of 1,000 μg/mL OVEO and thymol were comparable to chemical control. Conclusions OVEO showed moderate antifungal activity, whereas its main components carvacrol and thymol have great application potential as natural fungicides or lead compounds for commercial fungicides in preventing and controlling plant diseases caused by B. cinerea.


2021 ◽  
Vol 48 (3) ◽  
Author(s):  
Hind Lahmyed ◽  
◽  
Rachid Bouharroud ◽  
Redouan Qessaoui ◽  
Abdelhadi Ajerrar ◽  
...  

The present work aims to isolate actinomycete bacteria with antagonistic abilities towards Botrytis cinerea, the causal agent of gray mold, from a soil sample collected from the rhizosphere of a healthy tomato grove. In vitro confrontation led to the isolation of 104 actinomycete isolates; fifteen isolates have shown the most significant mortality rate of the mycelial growth of B. cinerea (>50%). Based on the results of this screening, representative strains were selected to verify their in vivo antagonistic activity on tomato fruits; the reduction of B. cinerea has a percentage ranging from 52.38% to 96.19%. Furthermore, the actinomycete isolates were evaluated for their plant growth-promoting (PGP) properties and their ability to produce biocontrol-related extracellular enzymes viz., amylase, protease, cellulase, chitinase, esterases, and lecithinase. Indeed, Ac70 showed high β-1,3-glucanase activity and siderophore production (17U/ml and 43% respectively), and the highest chitinase activity (39μmol/ml) was observed for Ac24. These results indicated that these actinomycetes might potentially control gray mold caused by B. cinerea on tomato fruits. Investigations on enhancing the efficacy and survival of the biocontrol agent in planta and finding out the best formulation are recommended for future research.


Plant Disease ◽  
2020 ◽  
Vol 104 (11) ◽  
pp. 2986-2993
Author(s):  
Yong Wang ◽  
Miaomaio Wang ◽  
Letian Xu ◽  
Yang Sun ◽  
Juntao Feng

In the present study, a total of 95 Botrytis cinerea single-spore strains collected from different hosts in Shaanxi Province of China were characterized for their sensitivity to the sterol demethylation inhibitor fungicide flusilazole. The effective concentration for 50% inhibition of mycelial growth (EC50) of flusilazole ranged from 0.021 to 0.372 µg/ml, with an average value of 0.093 µg/ml. Cross-resistance between flusilazole and commonly used fungicides was not detected, and no flusilazole-resistant mutants were induced. Both on detached strawberry leaves and in greenhouse experiments, flusilazole was more effective than the commonly used fungicide carbendazim at reducing gray mold. After culture on PDA plates or detached strawberry leaves, no difference in sclerotia production or pathogenicity was detected between two strains, WG12 (most sensitive to flusilazole) and MX18 (least sensitive to flusilazole). After treatment with flusilazole, however, the two strains lost the ability to produce sclerotia, and oxalic acid and ergosterol contents in mycelium decreased. Interestingly, the inhibition rate of ergosterol content in MX18 was significantly lower than that in WG12. Expression of Cyp51, BcatrD, and Bcmfs1 genes all increased after treatment with flusilazole, especially the Cyp51 and BcatrD genes. However, the expression of Cyp51 gene or BcatrD gene in WG12 and MX18 were significantly different from each other after treatment with flusilazole. In addition, no point mutations in Cyp51 gene were found in MX18. These data suggest flusilazole is a promising fungicide for resistance management of gray mold and also provided novel insights into understanding the resistance mechanism of flusilazole against plant pathogens.


Sign in / Sign up

Export Citation Format

Share Document