scholarly journals Influence of Open Alleys in Field Trials Assessing Yield Effects from Fungicides in Corn

Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 263-266 ◽  
Author(s):  
Paul Vincelli ◽  
Chad Lee

Including open alleys at ends of plots is a common practice when field-testing foliar fungicides used in corn production. Open alleys facilitate movement of workers and equipment between plots during spray application. Open alleys affect crop yield estimates in small plots typically used in replicated, randomized experimental designs, because of reduced interplant competition. However, no published research has tested whether the alley effect interacts with fungicide to bias the assessment of the agronomic effects of the latter. We tested this hypothesis over 2 years by evaluating yield with and without application of Headline AMP (containing pyraclostrobin and metconazole) plus nonionic surfactant applied once at VT/R1 in 7.6-m plots separated on their ends by 1.5-m alleys free of aboveground vegetation. In each plot, data were collected from seven subplots, each measuring 1.09 m of row-length and running parallel to the long axis of the plot. Consistent with previous reports, yields of subplots were substantially higher toward plot ends than in the central areas of plots. Surprisingly, a significant (P < 0.10) fungicide × subplot interaction was observed in both experiments, indicating that the yield response from fungicide depended on subplot position within the plot. However, yield differences due to fungicide were trivial when comparing regression-based yield estimates from all seven subplot positions to those obtained from only the centermost three subplot positions. Our study does not lend support to the hypothesis that the open-alley design creates a meaningful bias in assessment of treatment effects due to foliar fungicides in corn. However, additional research on this question is warranted, given the complexities of comparing results in large-scale plots vs. small plots, the limitations of our study, and the widespread use of fungicides on field corn in the United States.

2011 ◽  
Vol 101 (9) ◽  
pp. 1122-1132 ◽  
Author(s):  
P. A. Paul ◽  
L. V. Madden ◽  
C. A. Bradley ◽  
A. E. Robertson ◽  
G. P. Munkvold ◽  
...  

The use of foliar fungicides on field corn has increased greatly over the past 5 years in the United States in an attempt to increase yields, despite limited evidence that use of the fungicides is consistently profitable. To assess the value of using fungicides in grain corn production, random-effects meta-analyses were performed on results from foliar fungicide experiments conducted during 2002 to 2009 in 14 states across the United States to determine the mean yield response to the fungicides azoxystrobin, pyraclostrobin, propiconazole + trifloxystrobin, and propiconazole + azoxystrobin. For all fungicides, the yield difference between treated and nontreated plots was highly variable among studies. All four fungicides resulted in a significant mean yield increase relative to the nontreated plots (P < 0.05). Mean yield difference was highest for propiconazole + trifloxystrobin (390 kg/ha), followed by propiconazole + azoxystrobin (331 kg/ha) and pyraclostrobin (256 kg/ha), and lowest for azoxystrobin (230 kg/ha). Baseline yield (mean yield in the nontreated plots) had a significant effect on yield for propiconazole + azoxystrobin (P < 0.05), whereas baseline foliar disease severity (mean severity in the nontreated plots) significantly affected the yield response to pyraclostrobin, propiconazole + trifloxystrobin, and propiconazole + azoxystrobin but not to azoxystrobin. Mean yield difference was generally higher in the lowest yield and higher disease severity categories than in the highest yield and lower disease categories. The probability of failing to recover the fungicide application cost (ploss) also was estimated for a range of grain corn prices and application costs. At the 10-year average corn grain price of $0.12/kg ($2.97/bushel) and application costs of $40 to 95/ha, ploss for disease severity <5% was 0.55 to 0.98 for pyraclostrobin, 0.62 to 0.93 for propiconazole + trifloxystrobin, 0.58 to 0.89 for propiconazole + azoxystrobin, and 0.91 to 0.99 for azoxystrobin. When disease severity was >5%, the corresponding probabilities were 0.36 to 95, 0.25 to 0.69, 0.25 to 0.64, and 0.37 to 0.98 for the four fungicides. In conclusion, the high ploss values found in most scenarios suggest that the use of these foliar fungicides is unlikely to be profitable when foliar disease severity is low and yield expectation is high.


Plant Disease ◽  
2020 ◽  
Author(s):  
Yuba Raj Kandel ◽  
Catherine L. Hunt ◽  
Keith A Ames ◽  
Nicholas Arneson ◽  
Carl Bradley ◽  
...  

Random-effect meta-analyses were performed on data from 240 field trials conducted between 2005 and 2018 across nine U.S. states and Ontario, Canada, to quantify the yield response of soybean after application of foliar fungicides at beginning pod (R3). Meta-analysis showed that the overall mean yield response when fungicide was used compared to not applying a fungicide was 2.7% (110 kg/ha). Moderator variables were also investigated and included fungicide group, growing season, planting date, and base yield, which all significantly influenced the yield response. There was also evidence that precipitation from the time of planting to the R3 growth stage influenced yield when fungicide was used (P = 0.059). Fungicides containing a premix of active ingredients from multiple groups (either two or three ingredients) increased the yield by 3.0% over not applying a fungicide. The highest and lowest yield responses were observed in 2005 and 2007, respectively. Better yield response to fungicides (a 3.0% increase) occurred when soybeans were planted not later than 21 May and when total precipitation between planting and the R3 application date was above historic averages. Temperatures during the season did not influence the yield response . Yield response to fungicide was higher (a 4.7% increase) in average yield category (no spray control yield 2878 to 3758 kg/ha) and then gradually decreased with increasing base yield. Partial economic analyses indicated that use of foliar fungicides is less likely to be profitable when foliar diseases are absent or at low levels.


2020 ◽  
Vol 21 (4) ◽  
pp. 224-229
Author(s):  
Darcy E. P. Telenko ◽  
Jeffrey D. Ravellette ◽  
Kiersten A. Wise

Gray leaf spot (Cercospora zeae-maydis) is a foliar disease of corn (Zea mays) that consistently reduces yields across the United States and is an annual concern in Indiana corn production. Field trials were conducted in West Lafayette, IN, over 3 years (2016 to 2018) to evaluate the effectiveness of 12-leaf collar stage (V12) foliar fungicide applications compared with tasseling (VT) applications for gray leaf spot management and yield. Results indicated that during years in which foliar disease severity was less than 4%, there was no effect of application timing on gray leaf spot severity. In 2018, when gray leaf spot levels exceeded 5%, significantly less disease was observed in treatments receiving VT applications compared with V12 applications. Application timing did not affect yield in any year of the experiment. In 2016, benzovindiflupyr + azoxystrobin + propiconazole resulted in greater yields compared with the nontreated control, and in 2018, pyraclostrobin + metconazole and benzovindiflupyr + azoxystrobin + propiconazole resulted in greater yields compared with the nontreated control. This research indicates that in high disease pressure environments and years, Indiana farmers may want to continue to apply fungicides at VT rather than apply prior to tassel.


2014 ◽  
Vol 153 (8) ◽  
pp. 1464-1478 ◽  
Author(s):  
M. LEGGETT ◽  
N. K. NEWLANDS ◽  
D. GREENSHIELDS ◽  
L. WEST ◽  
S. INMAN ◽  
...  

SUMMARYFindings from multi-year, multi-site field trial experiments measuring maize yield response to inoculation with the phosphorus-solubilizing fungus,Penicillium bilaiaeChalabuda are presented. The main objective was to evaluate representative data on crop response to the inoculant across a broad set of different soil, agronomic management and climate conditions. A statistical analysis of crop yield response and its variability was conducted to guide further implementation of a stratified trial and sampling plan. Field trials, analysed in the present study, were conducted across the major maize producing agricultural cropland of the United States (2005–11) comprising 92 small (with sampling replication) and 369 large (without replication) trials. The multi-plot design enabled both a determination of how sampling area affects the estimation of maize yield and yield variance and an estimation of the ability of inoculation withP. bilaiaeto increase maize yield. Inoculation increased maize yield in 66 of the 92 small and 295 of the 369 large field trials (within the small plots, yield increased significantly at the 95% confidence level, by 0·17 ± 0·044 t/ha or 1·8%, while in the larger plots, yield increases were higher and less variable (i.e., 0·33 ± 0·026 t/ha or 3·5%). There was considerable inter-annual variability in maize yield response attributed to inoculation compared to the un-inoculated control, with yield increases varying from 0·7 ± 0·75 up to 3·7 ± 0·73%. No significant correlation between yield response and soil acidity (i.e., pH) was detected, and it appears that pH reduction (through organic acid or proton efflux) was unlikely to be the primary pathway for better phosphorus availability measured as increased yield. Seed treatment and granular or dribble band formulations of the inoculant were found to be equally effective. Inoculation was most effective at increasing maize yield in fields that had low or very low soil phosphorus status for both small and large plots. At higher levels of soil phosphorus, yield in the large plots increased more with inoculation than in the small plots, which could be explained by phosphorus fertilization histories for the different field locations, as well as transient (e.g., rainfall) and topographic effects.


2010 ◽  
Vol 14 ◽  
pp. 147-148
Author(s):  
D.R.W. Kandula ◽  
A. Stewart ◽  
J. Mcdermid ◽  
D. Gale ◽  
J. Swaminathan

Soil-borne damping-off diseases are a major constraint limiting pasture seedling emergence and yield. Large scale laboratory and glasshouse screening of beneficial micro-organisms against several host/pathogen systems was conducted to identify efficient bio-control and growthpromoting microbes. This was followed by field-testing of the best microbes and their formulations for efficient application techniques. The research identified a number of fungal (Trichoderma spp.) and bacterial (Paenibacillus spp.) isolates which suppressed damping-off diseases and promoted plant growth of various pasture species. Preliminary field-trials with granule and seed-coat formulations confirmed the glasshouse results. Intensive research trials with a mix of four T. atroviride isolates, providing growth promotion and disease control activity, led to the development of a prototype pasture seed additive product. Keywords: damping-off diseases, Paenibacillus spp., seed-coating, Trichoderma spp.


2012 ◽  
Vol 5 (2) ◽  
pp. 238-248 ◽  
Author(s):  
David P. Matlaga ◽  
Brian J. Schutte ◽  
Adam S. Davis

AbstractSome plants being considered as bioenergy crops share traits with invasive species and have histories of spreading outside of their native ranges, highlighting the importance of evaluating the invasive potential before the establishment of large-scale plantings. The Asian grass Miscanthus × giganteus is currently being planted as a bioenergy crop in the north central region of the United States. Our goal was to understand the demographic rates and vegetative spread of this species in unmanaged arable lands in Illinois to compare with those of large-statured invasive grasses (LSIGs). We collected data from 13 M. × giganteus plantings in Illinois, ranging in age from 1 to 7 yr, recording tiller number, plant spatial extent, spikelet production, and plant survival over 4 yr. Additionally, to understand recruitment potential, we conducted a greenhouse germination experiment, and, to estimate establishment from rhizome fragments, field trials were performed. Miscanthus × giganteus demographic rates were age dependent. Spikelet production was high, with 1- and 4-yr plants producing an annual average of more than 10,000 and 180,000 spikelets plant−1, respectively; however, data from our germination trial suggested that none of these spikelets had the potential to yield seedlings. On average, plants expanded vegetatively 0.15 m yr−1. Tiller density within the center of a clone decreased with age, possibly leading to a “dead center” found among some LSIGs. Rhizome establishment increased with weight, ranging from 0 to 42%. Survival was low, 24%, for first-year plants but quickly climbed to an asymptote of 98% survival for 4-yr-old plants. Our results suggest that efforts should be made to eradicate plants that escape biomass production fields within a year of establishment, before the onset of high survival. Future work is needed to determine what types of natural and anthropogenic disturbances can fragment rhizomes, leading to regeneration.


Author(s):  
Kurt A. Carpenter ◽  
Adam J. Sisson ◽  
Yuba R. Kandel ◽  
Viviana Ortiz ◽  
Martin I. Chilvers ◽  
...  

Sclerotinia stem rot (SSR or white mold), caused by Sclerotinia sclerotiorum (Lib.) DeBary, is an economically important fungal disease of soybean. SSR routinely causes yield loss in the upper Corn Belt of the United States due to wet, humid conditions that coincide with moderate temperatures. This study investigated the novel cultural practice of mechanical cutting, or mowing, as an SSR management practice across multiple seeding rates. Mowing soybean during early vegetative growth alters plant architecture and growth habit. This results in a microclimate within the canopy less suitable for disease development. Field trials were conducted in Iowa, Illinois, Michigan, and Wisconsin in 2017 and 2018. Experimental design was a randomized complete block with four replications. Treatments included mowing (mowing and no mowing), seeding rate (197,684, 271,816, and 345,947 seeds/ha), and fungicide application (boscalid, Endura, and no fungicide). Soybean was mowed at approximately the V4 (four unfolded trifoliate leaves) growth stage. Mowing reduced disease in multiple locations; however, it also reduced yield in most of the locations. In general, there was less SSR in plots with lower seeding rates. Fungicide significantly reduced SSR in two of the five site-years for which disease was observed. Significant yield response to fungicide was also observed in two of the nine total field trials. Results indicate cultural practices such as mowing and reduced seeding rate can decrease SSR severity but also can impact potential yield. Additionally, yield response to SSR management practices may not be observed if disease is absent or at low levels.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 563B-563
Author(s):  
Terence L. Robinson ◽  
William C. Johnson

Rootstock breeding programs in the United States, the United Kingdom, Germany, Russia, Poland, the Czech Republic, and Japan have all released apple rootstocks in the recent past that are potentially important to the worldwide apple industry in the next century. Several of these programs are continuing to breed new rootstocks. Each program has focused on different breeding objectives, thus giving a wide range of horticultural characteristics among this new group of rootstocks. All programs have focused on the horticulturally important traits of productivity, dwarfing and precocity but certain programs have also emphasized other characteristics such as propagability, stress tolerance, disease resistance or insect resistance. Commercialization of this new group of rootstocks is proceeding at an extremely fast pace due to the worldwide networking of fruit tree nursery companies and the use of plant patents. This presents a large job for research and extension personnel to properly test rootstocks for adaptability to different growing areas before they are planted on a large scale. The national rootstock testing project (NC-140) composed of researchers from most apple growing states and provinces in the U.S. and Canada is collecting rootstocks from around the world and conducting uniform field trials that give performance data from a wide variety of climates and soils. This information becomes the basis for local rootstock recommendations in North America. This presentation reviews the most promising rootstocks from around the world and summarize the research information from North American and worldwide trials.


1966 ◽  
Vol 05 (02) ◽  
pp. 67-74 ◽  
Author(s):  
W. I. Lourie ◽  
W. Haenszeland

Quality control of data collected in the United States by the Cancer End Results Program utilizing punchcards prepared by participating registries in accordance with a Uniform Punchcard Code is discussed. Existing arrangements decentralize responsibility for editing and related data processing to the local registries with centralization of tabulating and statistical services in the End Results Section, National Cancer Institute. The most recent deck of punchcards represented over 600,000 cancer patients; approximately 50,000 newly diagnosed cases are added annually.Mechanical editing and inspection of punchcards and field audits are the principal tools for quality control. Mechanical editing of the punchcards includes testing for blank entries and detection of in-admissable or inconsistent codes. Highly improbable codes are subjected to special scrutiny. Field audits include the drawing of a 1-10 percent random sample of punchcards submitted by a registry; the charts are .then reabstracted and recoded by a NCI staff member and differences between the punchcard and the results of independent review are noted.


2004 ◽  
Vol 52 (2) ◽  
pp. 157-163
Author(s):  
C. U. Egbo ◽  
M. A. Adagba ◽  
D. K. Adedzwa

Field trials were conducted in the wet seasons of 1997 and 1998 at Makurdi, Otukpo and Yandev in the Southern Guinea Savanna ecological zone of Nigeria to study the responses of ten soybean genotypes to intercropping. The experiment was laid out in a randomised complete block design. The genotypes TGX 1807-19F, NCRI-Soy2, Cameroon Late and TGX 1485-1D had the highest grain yield. All the Land Equivalent Ratio (LER) values were higher than unity, indicating that there is great advantage in intercropping maize with soybean. The yield of soybean was positively correlated with the days to 50% flowering, days to maturity, plant height, pods/plant and leaf area, indicating that an improvement in any of these traits will be reflected in an increase in seed yield. There was a significant genotype × yield × location interaction for all traits. This suggests that none of these factors acted independently. Similarly, the genotype × location interaction was more important than the genotype × year interaction for seed yield, indicating that the yield response of the ten soybean genotypes varied across locations rather than across years. Therefore, using more testing sites for evaluation may be more important than the number of years.


Sign in / Sign up

Export Citation Format

Share Document