Assessing Late Vegetative and Tasseling Fungicide Application Timings on Foliar Disease and Yield in Indiana Corn

2020 ◽  
Vol 21 (4) ◽  
pp. 224-229
Author(s):  
Darcy E. P. Telenko ◽  
Jeffrey D. Ravellette ◽  
Kiersten A. Wise

Gray leaf spot (Cercospora zeae-maydis) is a foliar disease of corn (Zea mays) that consistently reduces yields across the United States and is an annual concern in Indiana corn production. Field trials were conducted in West Lafayette, IN, over 3 years (2016 to 2018) to evaluate the effectiveness of 12-leaf collar stage (V12) foliar fungicide applications compared with tasseling (VT) applications for gray leaf spot management and yield. Results indicated that during years in which foliar disease severity was less than 4%, there was no effect of application timing on gray leaf spot severity. In 2018, when gray leaf spot levels exceeded 5%, significantly less disease was observed in treatments receiving VT applications compared with V12 applications. Application timing did not affect yield in any year of the experiment. In 2016, benzovindiflupyr + azoxystrobin + propiconazole resulted in greater yields compared with the nontreated control, and in 2018, pyraclostrobin + metconazole and benzovindiflupyr + azoxystrobin + propiconazole resulted in greater yields compared with the nontreated control. This research indicates that in high disease pressure environments and years, Indiana farmers may want to continue to apply fungicides at VT rather than apply prior to tassel.

2000 ◽  
Vol 90 (5) ◽  
pp. 486-490 ◽  
Author(s):  
Larry D. Dunkle ◽  
Morris Levy

Two taxonomically identical but genetically distinct sibling species, designated groups I and II, of Cercospora zeae-maydis cause gray leaf spot of maize in the United States. Isolates of the gray leaf spot pathogen from Africa were compared with isolates from the United States by amplified fragment length polymorphism (AFLP) analysis and restriction digests of internal transcribed spacer (ITS) regions and 5.8S ribosomal DNA (rDNA), as well as by morphological and cultural characteristics. The isolates from Africa were morphologically indistinguishable from the U.S. isolates in both groups, but like isolates of group II, they grew more slowly and failed to produce detectable amounts of cercosporin in culture. Analysis of restriction fragments from the ITS and rDNA regions digested with five endonucleases indicated that all of the African isolates shared the profile of the C. zeae-maydis group II population from the eastern United States and, thus, are distinct from the group I population, which is more prevalent in the United States and other parts of the world. Cluster analysis of 85 AFLP loci confirmed that the African and U.S. group II populations were conspecific (greater than 97% average similarity) with limited variability. Among all group II isolates, only 8 of 57 AFLP loci were polymorphic, and none was specific to either population. Thus, although gray leaf spot was reported in the United States several decades prior to the first record in Africa, the relative age of the two populations on their respective continents could not be ascertained with confidence. The absence of C. zeae-maydis group I in our samples from four countries in the major maize-producing region of Africa as well as the greater AFLP haplotype diversity found in the African group II population, however, suggest that Africa was the source of C. zeae-maydis group II in the United States. The overall paucity of AFLP variation in this sibling species further suggests that its origin is recent or that the ancestral population experienced a severe bottleneck prior to secondary migration.


2015 ◽  
Vol 105 (8) ◽  
pp. 1080-1089 ◽  
Author(s):  
Sally O. Mallowa ◽  
Paul D. Esker ◽  
Pierce A. Paul ◽  
Carl A. Bradley ◽  
Venkata R. Chapara ◽  
...  

Foliar fungicide use in the U.S. Corn Belt increased in the last decade; however, questions persist pertaining to its value and sustainability. Multistate field trials were established from 2010 to 2012 in Illinois, Iowa, Ohio, and Wisconsin to examine how hybrid and foliar fungicide influenced disease intensity and yield. The experimental design was in a split-split plot with main plots consisting of hybrids varying in resistance to gray leaf spot (caused by Cercospora zeae-maydis) and northern corn leaf blight (caused by Setosphaera turcica), subplots corresponding to four application timings of the fungicide pyraclostrobin, and sub-subplots represented by inoculations with either C. zeae-maydis, S. turcica, or both at two vegetative growth stages. Fungicide application (VT/R1) significantly reduced total disease severity relative to the control in five of eight site-years (P < 0.05). Disease was reduced by approximately 30% at Wisconsin in 2011, 20% at Illinois in 2010, 29% at Iowa in 2010, and 32 and 30% at Ohio in 2010 and 2012, respectively. These disease severities ranged from 0.2 to 0.3% in Wisconsin in 2011 to 16.7 to 22.1% in Illinois in 2010. The untreated control had significantly lower yield (P < 0.05) than the fungicide-treated in three site-years. Fungicide application increased the yield by approximately 6% at Ohio in 2010, 5% at Wisconsin in 2010 and 6% in 2011. Yield differences ranged from 8,403 to 8,890 kg/ha in Wisconsin 2011 to 11,362 to 11,919 kg/ha in Wisconsin 2010. Results suggest susceptibility to disease and prevailing environment are important drivers of observed differences. Yield increases as a result of the physiological benefits of plant health benefits under low disease were not consistent.


Plant Disease ◽  
2011 ◽  
Vol 95 (2) ◽  
pp. 189-194 ◽  
Author(s):  
C. A. Bradley ◽  
D. K. Pedersen

Cercospora zeae-maydis, the causal agent of gray leaf spot on corn (Zea mays), can cause severe yield loss in the United States. Quinone outside inhibitor (QoI) fungicides are effective tools that can be used to manage gray leaf spot, and their use has increased in corn production in the United States. In total, 61 C. zeae-maydis isolates collected from fields in which QoI fungicides had never been applied were tested in vitro using azoxystrobin-, pyraclostrobin-, or trifloxystrobin-amended medium to determine the effective fungicide concentration at which 50% of the conidial germination was inhibited (EC50). The effect of salicylhydroxamic acid (SHAM) also was evaluated for seven isolates to determine whether C. zeae-maydis is capable of using alternative respiration in azoxystrobin-amended medium. All seven C. zeae-maydis isolates tested had significantly greater (P < 0.02) EC50 values when SHAM was not included in medium amended with azoxystrobin, indicating that C. zeae-maydis has the potential to utilize alternative respiration to overcome QoI fungicide inhibition in vitro. Baseline EC50 values of azoxystrobin ranged from 0.003 to 0.031 μg/ml, with mean and median values of 0.018 and 0.019 μg/ml, respectively. Baseline EC50 values of pyraclostrobin ranged from 0.0003 to 0.0025 μg/ml, with mean and median values of 0.0010 and 0.0010 μg/ml, respectively. Baseline EC50 values of trifloxystrobin ranged from 0.0004 to 0.0034 μg/ml, with mean and median values of 0.0023 and 0.0024 μg/ml, respectively. These baseline sensitivity values will be used in a fungicide resistance monitoring program to determine whether shifts in sensitivity to QoI fungicides are occurring in C. zeae-maydis populations.


Author(s):  
Nathan Kleczewski ◽  
Andrew Kness ◽  
Alyssa Koehler

Double cropped soybeans are planted on approximately 1/3 of crop acres in the Chesapeake Bay region of the United States. Producers have asked if foliar fungicides are required to optimize yields in this region. We assessed the impacts of foliar fungicide application timing and row spacing on foliar disease, greenstem, and yield from 11 site years spanning 2017-2019. Foliar diseases only developed at rateable levels in one location. Fungicide application, regardless of timing, increased percent greenstem over non-treated controls. Fungicide application did not impact soybean yield. Yield was greater in 38.1 cm rows when compared to 19 cm rows. Our data do not support the use of foliar fungicides in double cropped soybean production in this region.


Plant Disease ◽  
2004 ◽  
Vol 88 (10) ◽  
pp. 1146-1152 ◽  
Author(s):  
W. Uddin ◽  
M. D. Soika ◽  
A. S. McNitt ◽  
M. Fidanza

Ethofumesate is a widely used herbicide for control of annual bluegrass (Poa annua) in perennial ryegrass (Lolium perenne) fairways on golf courses in the United States. Effect of timing of ethofumesate application on development of gray leaf spot was evaluated on perennial ryegrass turf treated with six classes of fungicide. Two applications of ethofumesate (2.28 kg a.i./ha) were made to perennial ryegrass turf maintained at a 2-cm height, at 4-week intervals, each fall (October and November 1999 and 2000) or spring (April and May 2000 and 2001). In addition, turf was treated with the fungicides, azoxystrobin, chlorothalonil, flutolanil, iprodione, propiconazole, or thiophanate-methyl at the label rates at 14-day intervals. There were significant effects (P ≤ 0.05) of ethofumesate application timing and fungicide regime on gray leaf spot development. There also were significant interactions between the ethofumesate application timing and fungicide. Severity of gray leaf spot was significantly greater in turf plots treated with ethofumesate in spring compared to turf treated in fall or nontreated control plots treated with fungicides, flutolanil, iprodione, and propiconazole that were relatively less effective in control of gray leaf spot. There was no significant difference in disease severity in turf treated with ethofumesate in fall or to turf not treated with herbicide regardless of the fungicide used. Results of this study indicate that spring application of ethofumesate contributes to development of gray leaf spot epidemics, and the application timing interacts with the classes of fungicides. This study suggests that ethofumesate should be applied only in fall for control of P. annua, particularly in golf courses with a chronic gray leaf spot problem, as part of an integrated management of gray leaf spot in perennial ryegrass fairways.


Plant Disease ◽  
2007 ◽  
Vol 91 (5) ◽  
pp. 517-524 ◽  
Author(s):  
Y. Tosa ◽  
W. Uddin ◽  
G. Viji ◽  
S. Kang ◽  
S. Mayama

Gray leaf spot caused by Magnaporthe oryzae is a serious disease of perennial ryegrass (Lolium perenne) turf in golf course fairways in the United States and Japan. Genetic relationships among M. oryzae isolates from perennial ryegrass (prg) isolates within and between the two countries were examined using the repetitive DNA elements MGR586, Pot2, and MAGGY as DNA fingerprinting probes. In all, 82 isolates of M. oryzae, including 57 prg isolates from the United States collected from 1995 to 2001, 1 annual ryegrass (Lolium multiflorum) isolate from the United States collected in 1972, and 24 prg isolates from Japan collected from 1996 to 1999 were analyzed in this study. Hybridization with the MGR586 probe resulted in approximately 30 DNA fragments in 75 isolates (designated major MGR586 group) and less than 15 fragments in the remaining 7 isolates (designated minor MGR586 group). Both groups were represented among the 24 isolates from Japan. All isolates from the United States, with the exception of one isolate from Maryland, belonged to the major MGR586 group. Some isolates from Japan exhibited MGR586 fingerprints that were identical to several isolates collected in Pennsylvania. Similarly, fingerprinting analysis with the Pot2 probe also indicated the presence of two distinct groups: isolates in the major MGR586 group showed fingerprinting profiles comprising 20 to 25 bands, whereas the isolates in the minor MGR586 group had less than 10 fragments. When MAGGY was used as a probe, two distinct fingerprint types, one exhibiting more than 30 hybridizing bands (type I) and the other with only 2 to 4 bands (type II), were identified. Although isolates of both types were present in the major MGR586 group, only the type II isolates were identified in the minor MGR586 group. The parsimony tree obtained from combined MGR586 and Pot2 data showed that 71 of the 82 isolates belonged to a single lineage, 5 isolates formed four different lineages, and the remaining 6 (from Japan) formed a separate lineage. This study indicates that the predominant groups of M. oryzae associated with the recent outbreaks of gray leaf spot in Japan and the United States belong to the same genetic lineage.


1998 ◽  
Vol 88 (12) ◽  
pp. 1269-1275 ◽  
Author(s):  
Juan Wang ◽  
Morris Levy ◽  
Larry D. Dunkle

Monoconidial isolates of the fungus causing gray leaf spot of maize were obtained from diseased leaves collected throughout the United States and analyzed for genetic variability at 111 amplified fragment length polymorphism (AFLP) loci. Cluster analysis revealed two very distinct groups of Cercospora zeae-maydis isolates. Both groups were found to be relatively uniform internally with an average genetic similarity among isolates of approximately 93 and 94%, respectively. The groups were separated from each other by a genetic distance of approximately 80%, a distance greater than that separating each group from the sorghum pathogen, C. sorghi (67 to 70%). Characteristics and dimensions of conidia and conid-iophores produced on infected plants or nutrient media were unreliable criteria for taxonomic differentiation of isolates composing the two groups of C. zeae-maydis. Nucleotide sequences of 5.8S ribosomal DNA (rDNA) and the internal transcribed spacer (ITS) regions were identical within each group but different between the two groups and different from C. sorghi. Restriction fragment length polymorphisms generated by digestion of the 5.8S rDNA and ITS regions with TaqI readily distinguished each group and C. sorghi. Isolates in one group were generally distributed throughout maize-producing regions of the United States; isolates in the other group were localized in the eastern third of the country. Both types were present in the same fields at some locations. The genetic distance based on AFLP profiles and different ITS nucleotide sequences between the two morphologically indistinguishable groups indicate that they are sibling species. Although it is unlikely that breeding for resistance to gray leaf spot will be confounded by local or regional variation in the pathogen, a vigilant approach is warranted, because two pathogenic species exist with unknown abilities to evolve new pathotypes.


Plant Disease ◽  
2001 ◽  
Vol 85 (8) ◽  
pp. 817-826 ◽  
Author(s):  
G. Viji ◽  
B. Wu ◽  
S. Kang ◽  
W. Uddin ◽  
D. R. Huff

Gray leaf spot is a serious disease of perennial ryegrass (Lolium perenne) turf in the United States. Isolates of Pyricularia grisea causing the disease in perennial ryegrass were characterized using molecular markers and pathogenicity assays on various gramineous hosts. Genetic relationships among perennial ryegrass isolates were determined using different types of trans-posons as probes. Phylogenetic analysis using Pot2 and MGR586 probes, analyzed with AMOVA (analysis of molecular variance), showed that these isolates from perennial ryegrass consist of three closely related lineages. All the isolates belonged to a single mating type, MAT1-2. Among 20 isolates from 16 host species other than perennial ryegrass, only the isolates from wheat (Triticum aestivum) and triticale (× Triticosecale), showed notable similarity to the perennial ryegrass isolates based on their Pot2 fingerprints. The copy number and fingerprints of Pot2 and MGR586 in isolates of P. grisea from perennial ryegrass indicate that they are genetically distinct from the isolates derived from rice (Oryza sativa) in the United States. The perennial ryegrass isolates also had the same sequence in the internal transcribed spacer (ITS) region of the genes encoding ribosomal RNA as that of the wheat and triticale isolates, and exhibited rice isolate sequence polymorphisms. In pathogenicity assays, all the isolates of P. grisea from Legacy II perennial ryegrass caused characteristic blast symptoms on Marilee soft white winter wheat, Bennett hard red winter wheat, Era soft white spring wheat, and Presto triticale, and they were highly virulent on these hosts. An isolate from wheat and one from triticale (from Brazil) were also highly virulent on perennial ryegrass and Rebel III tall fescue (Festuca arundinacea). None of the isolates from perennial ryegrass caused the disease on Lagrue rice, and vice versa. Understanding the population structure of P. grisea isolates infecting perennial ryegrass and their relatedness to isolates from other gramineous hosts may aid in identifying alternate hosts for this pathogen.


Sign in / Sign up

Export Citation Format

Share Document