scholarly journals First Report of Shoot Blight and Canker Caused by Diplodia coryli in Hazelnut Trees in Chile

Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 144-144 ◽  
Author(s):  
J. A. Guerrero ◽  
S. M. Pérez

Shoot blight, twig and branch cankers with grayish discoloration, roughened tissue, and dieback were observed in 5-year-old European hazelnut trees (Corylus avellana L.) cv. Barcelona at two commercial plantations in the Allipén locality, Region de La Araucanía (38° 59′ 24.76″ S, 72° 29′ 35.58″ W), Chile, during the 2011 to 2012 growing season. In addition, discoloration of the wood was observed in cross-sections. In order to isolate the causal agent, entire twigs and shoot fragments with cankers were sterilized in 0.5% sodium hypochlorite for 2 minutes, followed by two rinses with sterile distilled water. The tissues were then stored in a humid chamber. Sub-epidermal black pycnidia with sporulation were detected on the symptomatic tissue. Conidia were transferred to potato dextrose agar (PDA) (Difco, Lawrence, KS) and incubated at 25°C in the dark. The mycelia were black, creeping, and compact in appearance. The mature conidia were dark brown with a single septum, slightly constricted at the septum, and ovoid with a broadly rounded apex; some had a truncated base. Conidia had the following measurements: (20.0-) 23.1 ± 1.9 (-28.0) × (10-) 11.9 ± 1.2 (-15) μm with an average length/width ratio of 1.95 ± 0.17 (n = 50). These morphometric characteristics correspond to those of Diplodia coryli Fuckel (1870), teleomorph: Botryosphaeria sensu lato. The identity of the fungus was confirmed using internal transcribed spacer (ITS) rDNA sequencing completed at CABI, United Kingdom. The sequencing report indicated that the isolate (IMI-501235a) had 100% homology with a reference strain (CBS 242.51) in the CBS collection. The obtained sequence was deposited in GenBank (Accession No. JX163116). The anamorphs of Botryosphaeria have been divided into up to 18 genera (1), many of which are not clearly defined. Diplodia (3), including D. coryli (CBS 242.51) and D. juglandis (CBS 188.87), have been included within the genus Dothiorella (2), but the taxon names have not been formally changed. A pathogenicity test was conducted with one isolate (IMI-501235a) and four 1-year-old plants of hazelnut cultivar Barcelona. Plants were maintained in individual bags in greenhouse conditions (14/10 hours dark/light, 20°C; 70% RH). Prior to inoculation, plant tissues were externally disinfected with sodium hypochlorite (2%) and rinsed with sterile distilled water. Each plant was inoculated at fresh wound sites on two shoots and three twigs around each vegetative bud. The inoculum consisted of an agar plug with mycelia (5 mm) from the margin of an actively growing colony cultured on PDA media for 7 days. Each wound was covered with moistened cotton and sealed with Parafilm; a control plant was inoculated in the same way with agar only. After 3 months, fragments of necrotic and discolored vascular system tissues from inoculated shoots were removed and incubated on PDA. D. coryli was consistently recovered from these tissues, satisfying Koch's postulates. The control plant showed no symptoms of the disease. D. coryli has been reported to cause symptoms of dieback (dead branches) in Italy and Spain. To our knowledge, this is the first report of D. coryli on C. avellana cv. Barcelona in Chile. European hazelnut is an emerging crop in Chile, grown mainly for export, and management strategies for this disease will need to be developed. References: (1) S. Denman et al. Stud. Mycol. 45:129, 2000. (2) A. J. L. Phillips et al. Persoonia 21:29, 2008. (3) A. J. L. Phillips et al. Mycologia 97:513, 2005.

Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1657-1657 ◽  
Author(s):  
J. Guerrero ◽  
S. Pérez

European hazelnut (Corylus avellana L.) is an emerging crop for export, mainly in southern Chile. Stem cankers and dieback of twigs on six-year-old European hazelnut cultivar Barcelona were observed during the 2012 growing season on plantations in Panguipulli (39° 38′ 37.12″ S and 72° 20′ 10.87″ W), Region de Los Rios, Chile. The incidence has been variable according to the place of plantation; it was estimated at approximately 15%. Cankers were characterized by brownish-gray and brown to reddish discoloration of the vascular stem system. Hazelnut plants between 1 and 3 years old developed stem basal canker, especially at conditions of high humidity and overpopulation of weeds; at critical conditions, the affected plants generally die. Small pieces of cankered stems, selected from 10 European hazelnuts, were surface sterilized in 0.5% sodium hypochlorite for 2 min and rinsed twice in sterile distilled water prior to incubation in a humid chamber for 7 days (25 ± 2°C) to stimulate production of reproductive bodies. Black sub-epidermal perithecia with unitunicate, cylindrical-clavate, 8-spored asci (n = 20) were obtained. Ascospores were septated, hyaline, multigutulate, and slightly constricted at the septum, the average measurements were (n = 20) 13.4 ± 0.6 μm × 3.9 ± 0.2 μm. The ascospores were transferred to potato dextrose agar (PDA) and incubated for 6 days at 25°C in the dark, then hyphal tips were transferred to fresh PDA and obtained a mycelia with white, cottony, and sparse colonies. Pycnidia and smooth, unicellular, hyaline, and biguttulate alpha conidia of 6.1 to 7.2 μm × 2.8 to 3.1 μm (n = 40) were observed. Beta conidia were not observed in culture media. Mature pycnidia were also detected on hazelnut shells remaining on the soil from the previous season. The identification of the species (isolate IMI-501237) was confirmed at CABI, United Kingdom, using an internal transcribed spacer (ITS), rDNA, BLASTn analysis of the 524-bp fragment, and showed 100% identity with Diaporthe australafricana Crous & J.M. van Niekerk (accessions KC343039, KC343038). These molecular and morphological characteristics were similar that reported from Vitis vinifera (2) and Chilean blueberry (3). The sequence obtained was deposited in GenBank (Accession No. JX316218.1). A pathogenicity test was conducted with isolate IMI-501237 on four 1-year-old plants from the hazelnut cultivar Barcelona. Plants were maintained in individual bags in greenhouse conditions (14/10 h dark/light, 20°C; 70% relative humidity). Prior to inoculation, plant tissues were surface disinfected with 2% sodium hypochlorite and rinsed with sterile distilled water. Each plant was inoculated at fresh wound sites on three stems and three vegetative buds on twigs. The inoculum consisted of an agar plug with mycelia (5 mm) from the edge of an actively growing colony cultured on PDA for 6 days. Each inoculation was covered with moistened cotton and sealed with Parafilm; a control plant was inoculated in the same way with agar only. After 30 days, necrotic lesions and discolored vascular tissue were only observed on inoculated stems and twigs. Symptomatic tissues were removed and incubated on PDA. D. australafricana was consistently recovered from these tissues, satisfying Koch's postulates. The control plant showed no symptoms of the disease. D. australafricana were previously reported on Vitis vinifera in Australia and South Africa (2,4), and Vaccinium corymbosum in Chile (1,3). To our knowledge, this is the first report of Diaporthe australafricana on Corylus avellana cultivar Barcelona in worldwide. References: (1) K. Elfar et al. Plant Dis. 97:1042, 2013. (2) R. Gomes et al. Persoonia 31:1, 2013. (3) B. Latorre et al. Plant Dis. 96:5, 2012. (4) J. M. van Niekerk et al. Australas. Plant Pathol. 34:27, 2005.


Plant Disease ◽  
2021 ◽  
Author(s):  
Cong Li ◽  
Jun Ang Liu ◽  
Guo ying Zhou

Aquilaria sinensis (Lour.) Spreng, also known as eaglewood, belongs to the Thymelaeaceae family and has a considerably high medicinal value. It has been enlisted as the class II national key protective plant. In June 2019, about 15 percent of A. sinensis treelets in a forest area of China's Hainan province were observed to have the anthracnose symptoms. The diseased spots on leaves of A. sinensis treelets were usually round or irregular with pale yellow edges. The color of the center of the lesion was firstly light brown and then black or yellowish-brown. Small pieces of tissue from the edge of the leaf spots were surface sterilized in 75% alcohol for the 60s, washed twice with sterile distilled water, and then cultivated at 28 °C in darkness on potato dextrose agar (PDA) medium. One fungus was systematically isolated to get pure cultures. The culturing of the three isolates was carried out in PDA media at 28 °C for a week. The average diameter of the collateral colony was 6.80 ±0.60 cm. Initially, the fungal colonies were white aerial mycelium and the central area of the colonies slowly turned jacinth. After seven days, the central mycelium turns grayish-green and the colonies’ undersurfaces were grey to white. The colony's surfaces were fluffy and round with smooth edges. Conidia were cylindrical, smooth, and transparent, with a slight indentation in the middle and uneven distribution of small particles inside, 12.5–20.6×3.5–6.8 µm (ave=15.9±1.40×5.18±1.07, n=50). Appressoria were typically elliptic or irregular and brown to dark brown. The isolates were characterized as Colletotrichum gloeosporioides species complex on the basis of the conidial morphology and culture representation, (Deng et al. 2017; Weir et al. 2012). To further verify the identification of the species, CX-0301, the isolated representative strains were extracted for genomic DNA. mating type 1-2-1 (Mat-1-2-1) ApMat, actin (ACT) gene, chitin synthase (CHS), and beta-tubulin (TUB2) gene were amplified using the primer pairs VcaMat-5F/VcaMat-5R, ACT-512F/ACT-783R, CHS-1-79F/CHS-1-354R, and TUB2-T1/Bt2b, respectively (Damm et al. 2012; Du et al. 2005). The homologous sequences of MN310694, MN310693, MN310692, and MN310691 were submitted to GenBank. These genes have ≥a 97% sequence similarity to the genes of Colletotrichum aenigma (MG717319.1, MG717317.1, MH476565.1, MH853679.1, respectively) in GenBank. These morphological and molecular characteristics identified that the pathogen is C. aenigma. (Weir et al. 2012). To further verify the isolated pathogen, the pathogenicity test was performed on uninfected healthy 2-year-old eaglewood seedlings. The conidial suspension (1×106 conidia/ml) of 5ml was sprayed on both surfaces of 10 leaves of plants of the same age and height and the controls were treated solely with distilled water (Deng et al. 2017). Upon completion of inoculation, plants were kept under greenhouse conditions with an assigned temperature of 28 ± 2°C while keeping relative humidity to 90% on a 12-h fluorescent light/dark regime. Anthracnose-like symptoms were observed 6 days postinoculation. The control plant tissues remained healthy. Follow up reisolation of C. enigma culture was obtained in PDA agar plates from leaf infected lesions, and the morphological features were found to be consistent with that of CX-0301 isolate, satisfying Koch's postulates. Based on the characterized information, it is the first report of Colletotrichum aenigma responsible for causing leaf spots on Aquilaria sinensis in China. Thereby, this provides a theoretical reference for the research and control of anthracnose on A. sinensis.


Plant Disease ◽  
2011 ◽  
Vol 95 (7) ◽  
pp. 874-874 ◽  
Author(s):  
Y. M. Shen ◽  
C. H. Chao ◽  
H. L. Liu

Gynura bicolor (Roxb. ex Willd.) DC., known as Okinawa spinach or hong-feng-cai, is a commonly consumed vegetable in Asian countries. In May 2010, plants with blight and wilt symptoms were observed in commercial vegetable farms in Changhua, Taiwan. Light brown-to-black blight lesions developed from the top of the stems to the petioles and extended to the base of the leaves. Severely infected plants declined and eventually died. Disease incidence was approximately 20%. Samples of symptomatic tissues were surface sterilized in 0.6% NaOCl and plated on water agar. A Phytophthora sp. was consistently isolated and further plated on 10% unclarified V8 juice agar, with daily radial growths of 7.6, 8.6, 5.7, and 2.4 mm at 25, 30, 35, and 37°C, respectively. Four replicates were measured for each temperature. No hyphal growth was observed at 39°C. Intercalary hyphal swellings and proliferating sporangia were produced in culture plates flooded with sterile distilled water. Sporangia were nonpapillate, obpyriform to ellipsoid, base tapered or rounded, and 43.3 (27.5 to 59.3) × 27.6 (18.5 to 36.3) μm. Clamydospores and oospores were not observed. Oospores were present in dual cultures with an isolate of P. nicotianae (p731) (1) A2 mating type, indicating that the isolate was heterothallic. A portion of the internal transcribed spacer sequence was deposited in GenBank (Accession No. HQ717146). The sequence was 99% identical to that of P. drechsleri SCRP232 (ATCC46724) (3), a type isolate of the species. The pathogen was identified as P. drechsleri Tucker based on temperature growth, morphological characteristics, and ITS sequence homology (3). To evaluate pathogenicity, the isolated P. drechsleri was inoculated on greenhouse-potted G. bicolor plants. Inoculum was obtained by grinding two dishes of the pathogen cultured on potato dextrose agar (PDA) with sterile distilled water in a blender. After filtering through a gauze layer, the filtrate was aliquoted to 240 ml. The inoculum (approximately 180 sporangia/ml) was sprayed on 24 plants of G. bicolor. An equal number of plants treated with sterile PDA processed in the same way served as controls. After 1 week, incubation at an average temperature of 29°C, blight and wilt symptoms similar to those observed in the fields appeared on 12 inoculated plants. The pathogen was reisolated from the lesions of diseased stems and leaves, fulfilling Koch's postulates. The controls remained symptomless. The pathogenicity test was repeated once with similar results. G. bicolor in Taiwan has been recorded to be infected by P. cryptogea (1,2), a species that resembles P. drechsleri. The recorded isolates of P. cryptogea did not have a maximal growth temperature at or above 35°C (1,2), a distinctive characteristic to discriminate between the two species (3). To our knowledge, this is the first report of P. drechsleri being associated with stem and foliar blight of G. bicolor. References: (1) P. J. Ann. Plant Pathol. Bull. 5:146, 1996. (2) H. H. Ho et al. The Genus Phytophthora in Taiwan. Institute of Botany, Academia Sinica, Taipei, 1995. (3) R. Mostowfizadeh-Ghalamfarsa et al. Fungal Biol. 114:325, 2010.


Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1580-1580 ◽  
Author(s):  
C. Kithan ◽  
L. Daiho

Etlingera linguiformis (Roxb.) R.M.Sm. of Zingiberaceae family is an important indigenous medicinal and aromatic plant of Nagaland, India, that grows well in warm climates with loamy soil rich in humus (1). The plant rhizome has medicinal benefits in treating sore throats, stomachache, rheumatism, and respiratory complaints, while its essential oil is used in perfumery. A severe disease incidence of leaf blight was observed on the foliar portion of E. linguiformis at the Patkai mountain range of northeast India in September 2012. Initial symptoms of the disease are small brown water soaked flecks appearing on the upper leaf surface with diameter ranging from 0.5 to 3 cm, which later coalesced to form dark brown lesions with a well-defined border. Lesions often merged to form large necrotic areas, covering more than 90% of the leaf surface, which contributed to plant death. The disease significantly reduces the number of functional leaves. As disease progresses, stems and rhizomes were also affected, reducing quality and yield. The diseased leaf tissues were surface sterilized with 0.2% sodium hypochlorite for 2 min followed by rinsing in sterile distilled water and transferred into potato dextrose agar (PDA) medium. After 3 days, the growing tips of the mycelium were transferred to PDA slants and incubated at 25 ± 2°C until conidia formation. Fungal colonies on PDA were dark gray to dark brown, usually zonate; stromata regularly and abundantly formed in culture. Conidia were straight to curved, ellipsoidal, 3-septate, rarely 4-septate, middle cells broad and darker than other two end cells, middle septum not median, smooth, 18 to 32 × 8 to 16 μm (mean 25.15 × 12.10 μm). Conidiophores were terminal and lateral on hyphae and stromata, simple or branched, straight or flexuous, often geniculate, septate, pale brown to brown, smooth, and up to 800 μm thick (2,3). Pathogen identification was performed by the Indian Type Culture Collection, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi (ITCC Accession No. 7895.10). Further molecular identity of the pathogen was confirmed as Curvularia aeria by PCR amplification and sequencing of the internal transcribed spacer (ITS) regions of the ribosomal DNA by using primers ITS4 and ITS5 (4). The sequence was submitted to GenBank (Accession No. MTCC11875). BLAST analysis of the fungal sequence showed 100% nucleotide similarity with Cochliobolus lunatus and Curvularia aeria. Pathogenicity tests were performed by spraying with an aqueous conidial suspension (1 × 106 conidia /ml) on leaves of three healthy Etlingera plants. Three plants sprayed with sterile distilled water served as controls. The first foliar lesions developed on leaves 7 days after inoculation and after 10 to 12 days, 80% of the leaves were severely infected. Control plants remained healthy. The inoculated leaves developed similar blight symptoms to those observed on naturally infected leaves. C. aeria was re-isolated from the inoculated leaves, thus fulfilling Koch's postulates. The pathogenicity test was repeated twice. To our knowledge, this is the first report of the presence of C. aeria on E. linguiformis. References: (1) M. H. Arafat et al. Pharm. J. 16:33, 2013. (2) M. B. Ellis. Dematiaceous Hyphomycetes. CMI, Kew, Surrey, UK, 1971. (3) K. J. Martin and P. T. Rygiewicz. BMC Microbiol. 5:28, 2005. (4) C. V. Suberamanian. Proc. Indian Acad. Sci. 38:27, 1955.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1278-1278 ◽  
Author(s):  
S. E. Cho ◽  
J. H. Park ◽  
S. H. Hong ◽  
I. Y. Choi ◽  
H. D. Shin

Agastache rugosa (Fisch. & C.A. Mey.) Kuntze, known as Korean mint, is an aromatic plant in the Lamiaceae. It is widely distributed in East Asian countries and is used as a Chinese traditional medicine. In Korea, fresh leaves are commonly added to fish soups and stews (3). In November 2008, several dozen Korean mints plants growing outdoors in Gimhae City, Korea, were found to be severely infected with a powdery mildew. The same symptoms had been observed in Korean mint plots in Busan and Miryang cities from 2008 to 2013. Symptoms first appeared as thin white colonies, which subsequently developed into abundant hyphal growth on stems and both sides of the leaves. Severe disease pressure caused withering and senescence of the leaves. Voucher specimens (n = 5) were deposited in the Korea University Herbarium (KUS). Appressoria on the mycelium were nipple-shaped or nearly absent. Conidiophores were 105 to 188 × 10 to 13 μm and produced 2 to 4 immature conidia in chains with a sinuate outline, followed by 2 to 3 cells. Foot-cells of the conidiophores were straight, cylindrical, slightly constricted at the base, and 37 to 58 μm long. Conidia were hyaline, ellipsoid to barrel-shaped, measured 25 to 40 × 15 to 23 μm (length/width ratio = 1.4 to 2.1), lacked distinct fibrosin bodies, and showed reticulate wrinkling of the outer walls. Primary conidia were obconically rounded at the apex and subtruncate at the base. Germ tubes were produced at the perihilar position of conidia. No chasmothecia were observed. The structures described above were typical of the Oidium subgenus Reticuloidium anamorph of the genus Golovinomyces. The measurements and morphological characteristics were compatible with those of G. biocellatus (Ehrenb.) V.P. Heluta (1). To confirm the identification, molecular analysis of the sequence of the internal transcribed spacer (ITS) region of ribosomal DNA (rDNA) of isolate KUS-F27200 was conducted. The complete ITS rDNA sequence was amplified using primers ITS5 and P3 (4). The resulting 514-bp sequence was deposited in GenBank (Accession No. KJ585415). A GenBank BLAST search of the Korean isolate sequence showed >99% similarity with the ITS sequence of many G. biocellatus isolates on plants in the Lamiaceae (e.g., Accession Nos. AB307669, AB769437, and JQ340358). Pathogenicity was confirmed by gently pressing diseased leaf onto leaves of five healthy, potted Korean mint plants. Five non-inoculated plants served as a control treatment. Inoculated plants developed symptoms after 7 days, whereas the control plants remained symptomless. The fungus present on inoculated plants was identical morphologically to that observed on the original diseased plants. The pathogenicity test was repeated with identical results. A powdery mildew on A. rugosa caused by G. biocellatus was reported from Romania (2). To our knowledge, this is the first report of powdery mildew caused by G. biocellatus on A. rugosa in Korea. The plant is mostly grown using organic farming methods with limited chemical control options. Therefore, alternative control measures should be considered. References: (1) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No. 11. CBS, Utrecht, 2012. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab., online publication, USDA ARS, retrieved 17 February 2014. (3) T. H. Kim et al. J. Sci. Food Agric. 81:569, 2001. (4) S. Takamatsu et al. Mycol. Res. 113:117, 2009.


Plant Disease ◽  
2020 ◽  
Author(s):  
Xue Li ◽  
Jie Li ◽  
Hua Yong Bai ◽  
Kecheng Xu ◽  
Ruiqi Zhang ◽  
...  

Rubber tree (Hevea brasiliensis (Willd. ex Adr. Juss) Müll. Arg.) is used for the extraction of natural rubber and is an economically and socially important estate crop commodity in many Asian countries such as Indonesia, Malaysia, Thailand, India, Sri Lanka, China and several countries in Africa (Pu et al, 2007). Xishuangbanna City and Wenshan City are the main rubber cultivation areas in Yunnan Province, China. In November 2012, rubber tree showing typical wilt symptoms (Fig. 1 A) and vascular stains (Fig. 1 B) were found in Mengla County, Xishuangbanna City. This disease was destructive in these trees and plant wilt death rate reached 5%. The diseased wood pieces (0.5cm long) from trunk of rubber was surface disinfected with 75% ethanol for 30s and 0.1% mercuric chloride (HgCl2) for 2min, rinsed three times with sterile distilled water, plated onto malt extract agar medium (MEA), and incubated at 28℃. After 7 days, fungal-like filaments were growing from the diseased trunk. Six cultures from 6 rubber trunk were obtained and incubated on MEA at 28℃, after 7 days to observe the cultural features. The mycelium of each culture was white initially on MEA, and then became dark green. Cylindrical endoconidia apices rounded, non-septate, smooth, single or borne in chains (8.9 to 23.6 × 3.81 to 6.3μm) (Fig. 1 C). Chlamydospores (Fig. 1 D) were abundant, thick walled, smooth, forming singly or in chains (11.1 to 19.2 × 9.4 to 12.0μm). The mould fungus was identifed as Chalaropsis based on morphology (Paulin-Mahady et al. 2002). PCR amplification was carried out for 3 isolates, using rDNA internal transcribed spacer (ITS) primer pairs ITS1F and ITS4 (Thorpe et al. 2005). The nucleotide sequences were deposited in the GenBank data base and used in a Blast search of GenBank. Blast analysis of sequenced isolates XJm8-2-6, XJm8-2 and XJm10-2-6 (accessions KJ511486, KJ511487, KJ511489 respectively) had 99% identity to Ch. thielavioides strains hy (KF356186) and C1630 (AF275491). Thus the pathogen was identified as Ch. thielavioides based on morphological characteristics and rDNA-ITS sequence analysis. Pathogenicity test of the isolate (XJm8-2) was conducted on five 1-year-old rubber seedlings. The soil of 5 rubber seedlings was inoculated by drenching with 40 ml spore suspension (106 spores / ml). Five control seedlings were inoculated with 40 ml of sterile distilled water. All the seedlings were maintained in a controlled greenhouse at 25°C and watered weekly. After inoculated 6 weeks, all the seedlings with spore suspension produced wilt symptoms, as disease progressed, inoculated leaves withered (Fig. 1 E) and vascular stains (Fig. 1 F) by 4 months. While control seedlings inoculated with sterile distilled water remained healthy. The pathogen re-isolated from all inoculated symptomatic trunk was identical to the isolates by morphology and ITS analysis. But no pathogen was isolated from the control seedlings. The pathogenicity assay showed that Ch. thielavioides was pathogenic to rubber trees. Blight caused on rubber tree by Ceratocystis fimbriata previously in Brazil (Valdetaro et al. 2015), and wilt by Ch. thielavioides was not reported. The asexual states of most species in Ceratocystis are “chalara” or “thielaviopsis” (de Beer et al. 2014). To our knowledge, this is the first report of this fungus causing wilt of rubber in China. The spread of this disease may pose a threat to rubber production in China.


Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 287-287 ◽  
Author(s):  
G. Z. Wang ◽  
M. P. Guo ◽  
Y. B. Bian

Coprinus comatus is one of the most commercially important mushrooms in China. Its fruiting body possesses rich nutritional and medicinal value. In November 2013, unusual symptoms were observed on C. comatus on a mushroom farm in Wuhan, Hubei, China. At first, fruiting bodies were covered by white and cobweb-like mycelia. Later, the cap and stipe turned brown or dark before rotting and cracking. The pathogen was isolated from infected tissue of C. comatus. Colonies of the pathogen on potato dextrose agar (PDA) medium first appeared yellowish, followed by an obvious ochraceous or pinkish color. Aerial mycelia grew along the plate wall, cottony, 1 to 4 mm high. Conidiophores were borne on the tops of hyphae, had two to four branches, and were cylindrical, long clavate, or fusiform. Conidia were borne on the tops of the branches of conidiophores, had one to two separates, and were long and clavate. The spores ranged from 15.3 to 22.1 μm long and were 5.1 to 8.3 μm wide, which was consistent with the characteristics of Cladobotryum protrusum (1). The species was identified by ribosomal internal transcribed spacer sequencing. The ribosomal ITS1-5.8S-ITS2 region was amplified from the isolated strain using primers ITS1 and ITS4. A BLAST search in GenBank revealed the highest similarity (99%) to C. protrusum (GenBank Accession Nos. FN859408.1 and FN859413.1). The pathogen was grown on PDA at 25°C for 3 days, and the inoculation suspension was prepared by flooding the agar surface with sterilized double-distilled water for spore suspension (1 × 105 conidia/ml). In one treatment, the suspension was sprayed on casing soil (106 conidia/m2) and mixed thoroughly with it, then cased with treated soil for 2 to 3 cm thickness on the surface of compost in cultivation pots (35 × 25× 12 cm), with sterile distilled water as a control (2). Eight biological replicates were included in this treatment. In the second treatment, mycelia plugs (0.3 × 0.3 cm) without spore production were added to 20 fruiting bodies. Mushrooms treated with blank agar plugs (0.3 × 0.3 cm) were used as a control. The plugs were covered with sterilized cotton balls to avoid loss of moisture. Tested cultivation pots were maintained at 18°C and 85 to 95% relative humidity. In the samples where casing soil was sprayed with conidia suspension, white mildew developed on the pileus, and a young fruiting body grew out from the casing soil. Eventually, the surface of the mushroom was overwhelmed by the mycelia of the pathogen and the pileus turned brown or black. For the other group inoculated with mycelia plugs, only the stipe and pileus inoculated with mycelia turned brown or dark; it rotted and cracked 2 to 3 days later. The symptoms were similar to those observed on the C. comatus cultivation farm. Pathogens re-isolated from pathogenic fruiting bodies were confirmed to be C. protrusum based on morphological characteristics and ITS sequence. To our knowledge, this is the first report of the occurrence of C. protrusum on the edible mushroom C. comatus (3). Based on the pathogenicity test results, C. protrusum has the ability to severely infect the fruiting body of C. comatus. References: (1) K. Põldmaa. Stud. Mycol. 68:1, 2011. (2) F. J. Gea et al. Plant Dis. 96:1067, 2012. (3) W. H. Dong et al. Plant Dis. 97:1507, 2013.


Plant Disease ◽  
2012 ◽  
Vol 96 (9) ◽  
pp. 1374-1374 ◽  
Author(s):  
M. K. Kim ◽  
Y. H. Lee ◽  
K. M. Cho ◽  
J. Y. Lee

Pleurotus eryngii is one of the most commercially important mushrooms in Korea. In May 2009, unusual symptoms were observed in P. eryngii grown in mushroom farms in Changnyeong and Hapcheon, in Gyeong-nam Province, Korea. One of the main symptoms was cobweb-like growth of fungal mycelia over the mushroom surface. Colonies on the surface rapidly overwhelmed the mushrooms, which turned pale brown or yellow. Mushrooms eventually turned dark brown and became rotten. Colonies of the isolates on potato dextrose agar (PDA) were yellowish, and a reddish or orange color was evident in the agar. The colonies grew 20 to 30 mm per day on PDA. Large spores with a single septum were produced on vertically branched conidiophores bearing two to four, mostly three to four, sporogenous cells, ranging from 17.2 to 20.5 μm long and 8.0 to 10.2 μm thick. The shape of the conidia was ellipsoid and obovoid. These morphological characteristics are consistent with descriptions of Cladobotryum mycophilum, a causal agent of cobweb disease in Agaricus bisporus (1,4). To identify the isolated fungal pathogen, the ITS region was amplified with ITS1 and ITS4 primers and sequenced. The sequence data from the isolate was deposited in GenBank (Accession No. JF693809). A BLAST search showed that the isolated strain belonged to a species of Cladobotryum. The highest similarity (99.5%) was to the ITS sequence of C. mycophilum (teleomorph Hypomyces odoratus) (GenBank Accession Nos. JF505112 and Y17096) (3,4). The strain that was tested for pathogenicity was grown on PDA at 25°C for 72 h. The inoculum was prepared by flooding the agar surface with 10 ml of sterilized double distilled water and scraping it with a spatula. The resulting spore suspension was filtered through three layers of cheesecloth. Conidial concentration was adjusted with a hemacytometer to 1 × 106 conidia ml–1. A conidia suspension was inoculated onto each of several stages of mushroom cultivation with a pipette. The control was spotted with double distilled water. In the case of infection during the inoculation and spawn running stages, the fungal mycelia colonized the media and hampered development of the mycelium of P. eryngii. In the regeneration and primordia formation stages of the host, the mycelium of the pathogen covered the surface of the plastic bottle containing the substrates and developed many spores. In the growing and harvesting stages, the surface of mushroom was overwhelmed by the mycelium of the fungal pathogen and turned pale or dark brown, accompanied by cracking of the stipe surface and finally rotting with a foul odor. These symptoms were similar to the observation from natural infection. The symptoms of the cobweb-like disease in A. bisporus (1,2) were observed within 5 to 7 days of inoculation with conidia suspensions of C. mycophilum. Fungi isolated from inoculated mushrooms were shown to be identical, based on phenotypic characteristic, to the inoculated strain used in these pathogenicity tests. No symptoms were observed on controls. To our knowledge, this is the first report on the occurrence of C. mycophilum on the edible mushroom P. eryngii in Korea. Based on the pathogenicity test results, the pathogen could attack P. eryngii in any cultivation stage, making it a potentially serious fungal pathogen in P. eryngii. References: (1) C. G. Back et al. J. Gen. Plant Pathol. 76:232, 2010. (2) R. H. Gaze. Mushroom J. 546:23, 1995. (3) F. J. Gea et al. Plant Dis. 95:1030, 2011. (4) H. M. Grogan and R. H. Gaze. Mycol. Res. 104:357, 2000.


Plant Disease ◽  
2012 ◽  
Vol 96 (2) ◽  
pp. 290-290 ◽  
Author(s):  
N. Ravi Sankar ◽  
Gundala Prasad Babu

In September 2009, diseased garlic bulbs (Allium sativum L. cv. Yamuna Safed) were received from producers and exporters in Hyderabad, Andra Pradesh, India. From 2009 to 2010, similar symptoms were observed on stored garlic bulbs (cvs. Yamuna Safed and Agrifound White) in Chittoor, Kadapa, and Hyderabad districts. In some locations, approximately 60% of the garlic bulbs were affected. At first, infected bulbs showed water-soaked, brown spots and then the disease progressed as small, slightly depressed, tan lesions. A total of 120 diseased samples were collected from all localities. Infected tissues were surface sterilized in 1% sodium hypochlorite for 2 min, rinsed three times in sterile distilled water, plated on potato dextrose agar (PDA), and incubated at 25°C for 7 days. Resultant fungal colonies were fast growing with white aerial mycelium and violet to dark pigments. Hyphae were septate and hyaline. Conidiophores were short, simple, or branched. Microconidia were abundant, single celled, oval or club shaped, measuring 4.5 to 10.5 × 1.3 to 2.5 μm, and borne in chains from both mono-and polyphialides. Macroconidia were not produced. On the basis of morphological characteristics, the pathogen was identified as Fusarium proliferatum (Matsushima) Nirenberg (2). Identification was confirmed by amplification of the internal transcribed spacer (ITS) region. Genomic DNA was extracted from pure cultures of an isolate, and the ITS region was amplified using the ITS4/5 primer pair. PCR amplicons of approximately 574 bp were obtained from isolates, and sequence comparisons with GenBank showed 99% similarity with F. proliferatum (Accession No. FN868470.1). Sequence from this study was submitted to GenBank nucleotide database (Accession No. AB646795). Pathogenicity tests were conducted with three isolates of the fungus following the method of Dugan et al. (1). Each assay with an isolate consisted of 10 garlic cloves disinfected in 1% sodium hypochlorite for 45 s, rinsed with sterile distilled water, and injured to a depth of 4 mm with a sterile 1-mm-diameter probe. The wounds were filled with PDA colonized by the appropriate isolate from a 5-day-old culture. Ten cloves for each tested isolate received sterile PDA as a control. The cloves were incubated at 25°C for 5 weeks; tests were repeated once. After 17 days, rot symptoms similar to the original symptoms developed on all inoculated cloves and F. proliferatum was consistently reisolated from symptomatic tissue, fulfilling Koch's postulates. No fungi were recovered from control cloves. F. proliferatum has been reported on garlic in the northwestern United States (1), Serbia (4), and Spain (3). To our knowledge, this is the first report of F. proliferatum causing rot disease on garlic bulbs in India. References: (1) F. M. Dugan et al. Plant Pathol. 52:426, 2003. (2) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Oxford, UK, 2006. (3) D. Palmero et al. Plant Dis. 94:277, 2010. (4) S. Stankovic et al. Eur. J. Plant Pathol. 48:165, 2007.


Plant Disease ◽  
2014 ◽  
Vol 98 (4) ◽  
pp. 571-571 ◽  
Author(s):  
H. H. Xing ◽  
C. Liang ◽  
S. E. Cho ◽  
H. D. Shin

Japanese spiraea (Spiraea japonica L.f.), belonging to Rosaceae, is widely planted for its ornamental value in China. Since July 2011, powdery mildew infections on leaves and stems of Japanese spiraea have been noticed in some parks and gardens of Chengyang District in Qingdao City, China (GPS coordinates 36°31′04.22″ N, 120°39′41.92″ E). Symptoms first appeared as white spots covered with mycelium on both side of the leaves and young stems. As the disease progressed, abundant mycelial growth covered the whole shoots and caused growth reduction and leaf distortion with or without reddening. A voucher specimen was deposited in the herbarium of Qingdao Agricultural University (Accession No. HMQAU13013). Hyphae were flexuous to straight, branched, septate, 5 to 7 μm wide, and had nipple-shaped appressoria. Conidiophores arising from the upper surface of hyphal cells produced 2 to 5 immature conidia in chains with a crenate outline. Foot-cells of conidiophores were straight, 60 to 125 × 7 to 9 μm, and followed by 1 to 2 shorter cells. Conidia were ellipsoid-ovoid to doliiform, measured 25 to 32 × 12 to 15 μm with a length/width ratio of 1.8 to 2.6, and had distinct fibrosin bodies. Chasmothecia were not found. The structures and measurements were compatible with the anamorphic state of Podosphaera spiraeae (Sawada) U. Braun & S. Takam. as described before (1). The identity of HMQAU13013 was further confirmed by analysis of nucleotide sequences of the internal transcribed spacer (ITS) regions amplified using the primers ITS1/ITS4 (4). The resulting 564-bp sequence was deposited in GenBank (Accession No. KF500426). A GenBank BLAST search of complete ITS sequence showed 100% identity with that of P. spiraeae on S. cantoniensis (AB525940). A pathogenicity test was conducted through inoculation by gently pressing a diseased leaf onto five healthy leaves of a potted Japanese spiraea. Five non-inoculated leaves served as controls. The plants were maintained in a greenhouse at 22°C. Inoculated leaves developed typical symptoms of powdery mildew after 5 days, but the non-inoculated leaves remained symptomless. The fungus presented on the inoculated plant was morphologically identical to that originally observed on diseased plants, fulfilling Koch's postulates. Powdery mildew of S. japonica caused by P. spiraeae has been recorded in Japan, Poland, and Switzerland (2,3). To our knowledge, this is the first report of powdery mildew caused by P. spiraeae on Japanese spiraea in China. References: (1) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No.11. CBS, Utrecht, 2012. (2) D. F. Farr and A. Y. Rossman. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ September 10, 2013. (3) T. Kobayashi. Index of Fungi Inhabiting Woody Plants in Japan. Host, Distribution and Literature. Zenkoku-Noson-Kyoiku Kyokai Publishing Co. Ltd., Tokyo, 2007. (4) S. Matsuda and S. Takamatsu. Mol. Phylogenet. Evol. 27:314, 2003.


Sign in / Sign up

Export Citation Format

Share Document