scholarly journals First Report of Fusarium solani Causing Crown and Root Rot on Strawberry Crops in Southwestern Spain

Plant Disease ◽  
2014 ◽  
Vol 98 (1) ◽  
pp. 161-161 ◽  
Author(s):  
A. M. Pastrana ◽  
N. Capote ◽  
B. De los Santos ◽  
F. Romero ◽  
M. J. Basallote-Ureba

Spain is the fourth largest strawberry (Fragaria × ananassa) producing country in the world. Since April 2010, stunted and dead strawberry plants have been detected in four strawberry fruit production fields in Huelva (southwestern Spain) affecting less than 1% of plants. Symptoms consisted of foliage wilt, plant stunting and drying, and death of older leaves. Internal vascular and cortical tissues of plant crowns showed an orange to brown discoloration. Crowns and roots of symptomatic plants were surface sterilized in 1% sodium hypochlorite for 2 min, rinsed in sterile distilled water for 2 min, and air-dried in a laminar flow cabinet. Small disinfested pieces were transferred to petri dishes containing potato dextrose agar (PDA) and incubated for 10 days at 25°C with a 12-h photoperiod. Cultures derived from single spores were obtained, and morphological characterization was performed by microscopic examination. White to pale cream colonies developed after 10 days of incubation. Unbranched monophialides with microconidia in false heads, micro- (0 to 3 septa) and macroconidia (5 to 7 septa) wide and robust in shape, and chlamydospores were consistent with descriptions of Fusarium solani (Martius) Appel & Wollenweber emend. Snyder & Hansen (2). In addition, the fungus was isolated from asymptomatic runner plants from nurseries by the same method described above, and from soil samples from six fruit-producing fields. Soil samples were analyzed by dilution plating on Fusarium-selective agar medium (1). Genomic DNA from three isolates (FPOST-81 from dead plant ‘Sabrina,’ TOR-11 from runner plant ‘Camarosa,’ and TOR-1 from soil) was obtained with a DNA extraction kit (Isolate Plant DNA MiniKit, Bioline). A portion of the translation elongation factor-1 alpha (EF-1α) gene was sequenced using EF-1/-2 primers (3) (GenBank Accession Nos. KF275032, KF275033, and KF275034). The sequence comparison revealed a 99 to 100% match with F. solani sequences in GenBank and Fusarium-ID databases. To confirm the pathogenicity of the fungi, runner strawberry plants ‘Camarosa’ were inoculated by dipping crowns and roots into a conidial suspension (106 to 107 conidia per ml) for 30 min (8 plants per F. solani isolate) or into sterile distilled water for the controls. Plants were potted in 13-cm diameter pots with peat and maintained at 25/18°C and 70/40% relative humidity (day/night) in a growth chamber with a daily 16-h photoperiod of fluorescent light. Three plants inoculated with isolates TOR-11 and FPOST-81, and four plants inoculated with isolate TOR-1, died within 10 days after inoculation. After 8 to 12 weeks, all of the remaining inoculated plants were stunted and developed symptoms similar to those observed in the field. Production of new feeder roots was lacking or scarce. Control plants remained healthy and formed feeder roots. All plants inoculated with isolates TOR-1 and FPOST-81, and 50% of plants inoculated with TOR-11, showed brown discoloration in the crown. F. solani was re-isolated from symptomatic plants at frequencies of 100% and 80 to 100% from root and crown tissues, respectively. Although F. solani has been reported as a pathogen in other crops, to our knowledge, this is the first report of the occurrence of F. solani causing disease in strawberry plants in Spain. References: (1) D. Bouhot and F. Rouxel. Ann. Phytopathol. 3:251, 1971. (2) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual, Blackwell Publishing, London, 2006. (3) K. O'Donnell et al. Proc. Natl. Acad. Sci. USA 95:2044, 1998.

Plant Disease ◽  
2021 ◽  
Author(s):  
Shuning Chen ◽  
Wei Sun ◽  
Huizhu Yuan ◽  
Xiaojing Yan

Gerbera (Gerbera jamesonii Bolus) is an important cut flower grown globally. In 2020, gerbera plants (Redaicaoyuan, Baimawangzi, and Hongditan cultivars) with roots, crowns, and stems rot were found in a greenhouse in Nanping, Fujian, China. Approximately 30% of the 60,000 plants showed symptoms. Diseased plants were stunted with chlorotic leaves. The leaves and flower heads were wilted and withered. Brown discoloration with red to black streaks occurred in the vascular system of the crown and stem. The stem pieces (3×3 mm) showing the symptom were surface-disinfected with 1% NaClO for 1 min and washed three times with sterilized water. The stem pieces were then dried and placed on potato dextrose agar (PDA) at 25℃ inside a dark chamber. Ten single-spored isolates were identified as Fusarium incarnatum based on morphological features. White to light brown mycelia were observed among the isolates on PDA medium. Falculate, multicelluar, straight to slightly curved macroconidia produced in monophialide sporodochia without distinctive foot shaped basal cell; and chlamydospores produced in some isolates (Leslie and Summerell). The size of macroconidia was 36.4 ± 5.20 × 4.6 ± 1.3 μm (n = 100) with 3 to 5 septates. Microconidia were mostly 0 to 1 septate measured 14.6 ± 1.9 × 2.6 ± 0.5 μm (n=100). Based on the morphological observation, isolates were further identified by molecular method. The ITS1/4 region combined with partial gene fragments of translation elongation factor (EF-1α, primer EF1/EF2, Geiser et al.) and calmodulin (CAM, primer CL1/CL2A, O’Donnell.) from the isolates were amplified and sequenced. All of the three tested isolates showed identical gene sequences. Sequences amplified from one represented isolate FIN-1 were submitted to Genbank. BLAST searches revealed that ITS1/4 (MW527088), EF-1α (MW556488), and CAM (MW556487) had 99.22%, 99.53%, 99.42% identity compared to F. incarnatum (MN480497, MN233577, and LN901596, respectively) in GenBank. FUSARIUM-ID (Geiser et al. 2004) analysis also showed 99 to 100% similarity with sequences of the F. incarnatum-equiseti species complex (FIESC) (FD_01636 for CAM, FD_01643 for EF-1α). The phylogenetic analysis was conducted using neighbor-joining algorithm based on the ITS, EF-1α, and CAM gene sequences. The isolate was clustered with F. incarnatum clade. Then, the pathogenicity of the fungus was confirmed by performing Koch’s postulates. Pure single-spored cultures were grown on carboxymethyl-cellulose (CMC) medium for sporulation. G. jamesonii plants used for pathogenicity tests were grown on sterilized potting soil in a plastic container to the ten-leaf stage prior to inoculation. Spores harvested from the CMC medium were adjusted to a concentration of 1×105 conidial/ml. Twelve healthy rooted gerbera seedlings were inoculated by drenching 10 ml of the conidial suspension onto roots. Twelve gerbera seedlings treated with 10 ml sterile water served as control treatments. Plants were grown in the glasshouse at temperatures of 23°C, relative humidity >70%, and 16 h light per day. After 10 days, blackening stems and withered leaf edges began to appear on inoculated seedlings, whereas control seedlings remained healthy. F. incarnatum was consistently re-isolated from the symptomatic stems, whereas no isolates were obtained from the control seedlings. The assay was conducted twice. To the best of our knowledge, this is the first report of F. incarnatum causing stem and root rot on G. jamesonii.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1273-1273 ◽  
Author(s):  
X.-M. Luo ◽  
J.-L. Li ◽  
J.-Y. Dong ◽  
A.-P. Sui ◽  
M.-L. Sheng ◽  
...  

China is the world's largest producer country of coptis (Coptis chinensis), the rhizomes of which are used in traditional Chinese medicine. Since 2008, however, root rot symptoms, including severe necrosis and wilting, have been observed on coptis plants in Chongqing, southwestern China. Of the plants examined from March 2011 to May 2013 in 27 fields, 15 to 30% were covered with black necrotic lesions. The leaves of infected plants showed wilt, necrotic lesions, drying, and death. The fibrous roots, storage roots, and rhizomes exhibited brown discoloration and progressive necrosis that caused mortality of the infected plants. Infected plants were analyzed to identify the causal organism. Discoloration of the internal vascular and cortical tissues of the rhizomes and taproots was also evident. Symptomatic taproots of the diseased coptis were surface sterilized in 1% sodium hypochlorite for 2 min, rinsed in sterile distilled water for 2 min, and then air-dried in sterilized atmosphere/laminar flow. Small pieces of disinfested tissue (0.3 cm in length) were transferred to petri dishes containing potato dextrose agar (PDA) supplemented with 125 μg ml–1 streptomycin sulfate and 100 μg ml–1 ampicillin, and incubated for 5 days at 25°C with a 12-h photoperiod. Four distinct species of fungal isolates (HL1 to 4) derived from single spores were isolated from 30 plants with root rot symptoms collected from the study sites. To verify the pathogenicity of individual isolates, healthy coptis plants were inoculated by dipping roots into a conidial suspension (106 conidia/ml) for 30 min (15 plants per isolate), as described previously (1). Inoculated plants were potted in a mixture of sterilized quartz sand-vermiculite-perlite (4:2:1, v/v) and incubated at 25/18°C and 85 to 90% relative humidity (day/night) in a growth chamber with a daily 16-h photoperiod of fluorescent light. Plants dipped in sterile distilled water were used as controls. After 15 days, symptoms similar to those observed in the field were observed on all plants (n = 15) that were inoculated with HL1, but symptoms were not observed on plants inoculated with HL2, HL3, and HL4, nor on control plants. HL1 was re-isolated from symptomatic plants but not from any other plants. Morphological characterization of HL1 was performed by microscopic examination. The septate hyphae, blunt microconidia (2 to 3 septa) in the foot cell and slightly curved microconidia in the apical cell, and chlamydospores were consistent with descriptions of Fusarium solani (2). The pathogen was confirmed to be F. solani by amplification and sequencing of the ribosomal DNA internal transcribed spacer (rDNA-ITS) using the universal primer pair ITS4 and ITS5. Sequencing of the PCR product revealed a 99 to 100% similarity with the ITS sequences of F. solani in GenBank (JQ724444.1 and EU273504.1). Phylogenetic analysis (MEGA 5.1) using the neighbor-joining algorithm placed the HL1 isolate in a well-supported cluster (97% bootstrap value based on 1,000 replicates) with JQ724444.1 and EU273504.1. The pathogen was thus identified as F. solani based on its morphological and molecular characteristics. To our knowledge, this is the first report of root rot of coptis caused by F. solani in the world. References: (1) K. Dobinson et al. Can. J. Plant Pathol. 18:55, 1996. (2) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Oxford, 2006.


Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 1067-1067 ◽  
Author(s):  
V. Gupta ◽  
D. John ◽  
V. K. Razdan ◽  
S. K. Gupta

Bunium persicum (Kala zeera, also black cumin) is an economically important culinary crop that is cultivated for its seed pods and its tuberlike roots. In India, high-altitude regions of Himachal Pradesh, including the Padder valley and the Gurez area of Jammu and Kashmir, are areas of kalazeera production (3). In 2008 to 2009, tuber rot disease of kala zeera was observed during the late spring season in the Padder valley. Symptomatic plants were distributed in localized areas in the field and the symptoms included drying of foliage and rotting of tubers. White mycelia were found on the tubers at the late stages of disease development. Incidence of infection in the surveyed area was 80 to 90%. Yield losses were 50 to 60%. To isolate the causal pathogen, we cultured tissues from symptomatic tubers. Small bits of the infected tissue were surface disinfested in 0.1% mercuric chloride, followed by rinsing three times in sterile distilled water. The surface disinfested tissues were plated on potato dextrose agar (PDA) and incubated at 27°C for 4 days. Pure cultures of the mycelium from the diseased tissues were transferred to a second set of PDA for species identification. The fungus produced three types of spores: small, one-celled, oval microconidia; large, slightly curved, septate macroconidia; and rounded, thick-walled chlamydospores. Microconidia were mostly non-septate and 8.91 to 15.73 × 2.3 to 3.5 μm, whereas macroconidia were three- to five-septate and were 35.55 to 54.74 × 3.91 to 6.5 μm. On the basis of morphological characteristics (1), the fungus was identified and deposited as a member of the Fusarium solani species complex in the Indian Type Culture Collection, New Delhi (ID No. 8422.11). To confirm pathogenicity, healthy tubers were submerged for 20 min in a conidial suspension of the isolated fungus (1 × 105 cfu/ml), which was prepared in potato dextrose broth, incubated for 10 days at 27°C, and centrifuged at 140 rpm. Noninoculated controls were submerged in distilled water. Inoculated and control tubers were then planted in separate pots filled with sterilized soil and kept in a shade house. Symptoms appeared on inoculated tubers 9 to 10 days after planting. Signs of the pathogen in the form of mycelia were present. The tubers rotted and died 12 to 15 days after inoculation. Control tubers did not display any symptoms. F. solani species complex was reisolated from inoculated tubers, fulfilling Koch's postulates. F. solani has been reported to cause corm rot on gladiolus and saffron (2). To our knowledge, this is the first report of the F. solani species complex as pathogenic to tubers of kalazeera in India. References: (1) C. Booth. The Genus Fusarium. 47, 1971. (2) L. Z. Chen et al. J. Shanghai Agric. College 12:240, 1994. (3) K. S. Panwar et al. Agriculture Situation in India. 48:151, 1993.


2016 ◽  
Vol 56 (1) ◽  
pp. 100-103 ◽  
Author(s):  
Mostafa Abedi-Tizaki ◽  
Doustmorad Zafari ◽  
Jamal Sadeghi

Abstract In July 2013, symptoms of stem rot were observed in the Dracaena sanderiana cuttings in greenhouses of Mahallat County, Markazi Province, Iran. The symptoms first appeared as severe wilting. Later, leaves became brown and necrotic. Symptoms on the cuttings were observed as rotted areas on the middle of the stems. The cortical tissues of the plants showed a distinct brown discoloration. Eventually, the infected plants died. The pathogen was isolated from Dracaena stems and identified as F. solani by a fragment of the translation elongation factor 1-alpha (EF-1α) gene. Fusarium solani was confirmed by a pathogenicity test, and the causal agent was re-isolated from infected D. sanderiana plants. To the best of our knowledge, this is the first report of stem rot caused by F. solani on the cuttings of D. sanderiana.


Plant Disease ◽  
2014 ◽  
Vol 98 (8) ◽  
pp. 1158-1158 ◽  
Author(s):  
Y. H. Liu ◽  
T. Lin ◽  
C. S. Ye ◽  
C. Q. Zhang

Blueberry (Vaccinium corymbosum) production is developing quickly in China with about 20,000 ha presently cultivated. In 2010 in Lin'an, Zhejiang Province, plants developed an apparently new disease of blueberry (cv. Duke) with symptoms consisting of wilting of foliage, stunting of plants, and reduced fruit yields. Internal vascular and cortical tissues of plant crowns showed a brown to orange discoloration. Approximately 3% of the plants in the commercial plantings were affected and eventually died after 50 to 60 days. Infected plant samples (stems and roots) collected from different fields were surface sterilized with 1.5% sodium hypochlorite for 2 min, rinsed in water, plated on 2% potato dextrose agar (PDA), and incubated at 25°C in the dark for 1 week. Single conidium cultures were consistently isolated and cultured on acidified PDA (APDA) for morphological characterization (1,2). Colonies were light with purple mycelia, and beige or orange reverse colony colors developed after 7 days incubation at 25°C. Colonies producing abundant microconidia and macroconidia. Microconidia were hyaline and oval-ellipsoid to cylindrical (3.9 to 9.6 × 1.1 to 3.4 μm). Macroconidia were 3 to 5 septate and fusoid-subulate with a pedicellate base (28.6 to 37.5 × 3.3 to 4.2 μm). Morphology and development of macroconidia and microconida were consistent with a description of Fusarium oxysporum Schltdl (1,2). The ribosomal internal transcribed spacers ITS1 and ITS2 of eight isolates were amplified using primers ITS1/ITS4 on DNA extracted from mycelium and nucleotide sequences showed 100% similarity to that of F. oxysporum. To confirm pathogenicity, 20 blueberry plants (cv. Duke) were inoculated by dipping the roots into a conidial suspension (107 conidia per ml) for 30 min. The inoculated plants were transplanted into pots containing sterilized peat and maintained at 25°C and 100% relative humidity in a growth chamber with a daily 12-h photoperiod of fluorescent light. The pathogenicity test was conducted twice. Within 40 days, all inoculated plants developed wilt symptoms similar to that observed in the field. No symptoms were observed on plants dipped into distilled water. The fungus was successfully re-isolated from crowns and roots cultured on APDA, exhibiting morphological characteristics identical to F. oxysporum (1,2), confirming Koch's postulates. To our knowledge, this is the first report of blueberry wilt caused by Fusarium. References: (1) P. M. Kirk et al. The Dictionary of the Fungi, 10th edition, page 159. CABI Bioscience, Wallingford, UK, 2008. (2) W. C. Snyder and H. N. Hansen. Am. J. Bot. 27:64, 1940.


Plant Disease ◽  
2014 ◽  
Vol 98 (2) ◽  
pp. 284-284 ◽  
Author(s):  
M. Guo ◽  
Y. M. Pan ◽  
Y. L. Dai ◽  
Z. M. Gao

Yellow Mountain fuzz tip, a cultivar of Camellia sinensis (L.) Kuntze, is commonly grown in the Yellow Mountain region in Anhui Province of China. During 2011 to 2012, leaf and twig blight on tea plants occurred from July to September in growing regions. Symptoms of blight on leaves of infected plants were detected in 30 to 60% of the fields visited and up to 500 ha were affected each year. Symptoms began as small, water-soaked lesions on young leaves and twigs and later became larger, dark brown, necrotic lesions, 1 to 3 mm in diameter on leaves and 2 to 5 mm long on twigs. To determine the causal agent, symptomatic leaf tissue was collected from plants in Gantang and Tangkou townships in September 2012. Small pieces of diseased tea leaves and twigs were surface-disinfested in 2% NaClO for 3 min, rinsed twice in distilled water, plated on potato dextrose agar, and incubated at 28°C for 5 days. Eleven isolates were recovered and all cultures produced white-to-gray fluffy aerial hyphae and were dark on the reverse of the plate. The hyphae were hyaline, branching, and septate. Setae were 2- to 3-septate, dark brown, acicular, and 78.0 to 115.0 μm. Conidiogenous cells were hyaline, short, branchless, cylindrical, and 11.3 to 21.5 × 4.2 to 5.3 μm. Conidia were hyaline, aseptate, guttulate, cylindrical, and 12.5 to 17.3 × 3.9 to 5.8 μm. Appresoria were ovate to obovate, dark brown, and 8.4 to 15.2 × 7.8 to 12.9 μm. DNA was amplified using the rDNA-ITS primer pair ITS4/ITS5 (3), glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH) primer pair GDF/GDR (2) and beta-tubulin 2 gene (Tub2) primer pair Btub2Fd/Btub4Rd (4). Sequences (GenBank Accession Nos. KC913203, KC913204, and KC913205) of the 11 isolates were identical and revealed 100% similarity to the ITS sequence of strain P042 of Colletotrichum gloeosporioides (EF423527), 100% identity to the GAPDH of isolate C07009 of C. gloeosporioides (GU935860), and 99% similarity to Tub2 of isolate 85 of C. gloeosporioides (AJ409292), respectively. Based on the above data, the 11 isolates were identified as C. gloeosporioides (Penz.) Penz. & Sacc. To confirm pathogenicity, Koch's postulate was performed and 4 ml of conidial suspension (1 × 105 conidia/ml) of each of the 11 isolates was sprayed on five leaves and five twigs per plant on four 12-month-old Yellow Mountain fuzz tip plants. Control plants were sprayed with distilled water. The inoculated plants were maintained at 28°C in a greenhouse with constant relative humidity of 90% and a 12-h photoperiod of fluorescent light. Brown necrotic lesions appeared on leaves and twigs after 7 days, while the control plants remained healthy. The experiments were conducted three times and the fungus was recovered and identified as C. gloeosporioides by both morphology and molecular characteristics. Tea plant blight caused by C. gloeosporioides was identified in Brazil (1), but to our knowledge, this is the first report of C. gloeosporioides causing tea leaf and twig blight on Yellow Mountain fuzz tip plants in Anhui Province of China. References: (1) M. A. S. Mendes et al. Page 555 in: Embrapa-SPI/Embrapa-Cenargen, Brasilia, 1998. (2) M. D. Templeton et al. Gene 122:225, 1992. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990. (4) J. H. C. Woudenberg et al. Persoonia 22:56, 2009.


Plant Disease ◽  
2021 ◽  
Author(s):  
Sixto Velarde Felix ◽  
Victor Valenzuela ◽  
Pedro Ortega ◽  
Gustavo Fierros ◽  
Pedro Rojas ◽  
...  

Chickpea (Cicer aretinium L.) is a legume crop of great importance worldwide. In January 2019, wilting symptoms on chickpea (stunted grow, withered leaves, root rot and wilted plants) were observed in three fields of Culiacan Sinaloa Mexico, with an incidence of 3 to 5%. To identify the cause, eighty symptomatic chickpea plants were sampled. Tissue from roots was plated on potato dextrose agar (PDA) medium. Typical Fusarium spp. colonies were obtained from all root samples. Ten pure cultures were obtained by single-spore culturing (Ff01 to Ff10). On PDA the colonies were abundant with white aerial mycelium, hyphae were branched and septae and light purple pigmentation was observed in the center of old cultures (Leslie and Summerell 2006). From 10-day-old cultures grown on carnation leaf agar medium, macroconidias were falciform, hyaline, with slightly curved apexes, three to five septate, with well-developed foot cells and blunt apical cells, and measured 26.6 to 45.8 × 2.2 to 7.0 μm (n = 40). The microconidia (n = 40) were hyaline, one to two celled, produced in false heads that measured 7.4 to 20.1 (average 13.7) μm × 2.4 to 8.9 (average 5.3) μm (n = 40) at the tips of long monophialides, and were oval or reniform, with apexes rounded, 8.3 to 12.1 × 1.6 to 4.7 μm; chlamydospores were not evident. These characteristics fit those of the Fusarium solani (Mart.) Sacc. species complex, FSSC (Summerell et al. 2003). The internal transcribed spacer and the translation elongation factor 1 alpha (EF1-α) genes (O’Donnell et al. 1998) were amplified by polymerase chain reaction and sequenced from the isolate Ff02 and Ff08 (GenBank accession nos. KJ501093 and MN082369). Maximum likelihood analysis was carried out using the EF1-α sequences (KJ501093 and MN082369) from the Ff02 and Ff08 isolates and other species from the Fusarium solani species complex (FSSC). Phylogenetic analysis revealed the isolate most closely related with F. falciforme (100% bootstrap). For pathogenicity testing, a conidial suspension (1x106 conidia/ml) was prepared by harvesting spores from 10-days-old cultures on PDA. Twenty 2-week-old chickpea seedlings from two cultivars (P-2245 and WR-315) were inoculated by dipping roots into the conidial suspension for 20 min. The inoculated plants were transplanted into a 50-hole plastic tray containing sterilized soil and maintained in a growth chamber at 25°C, with a relative humidity of >80% and a 12-h/12-h light/dark cycle. After 8 days, the first root rot symptoms were observed on inoculating seedlings and the infected plants eventually died within 3 to 4 weeks after inoculation. No symptoms were observed plants inoculated with sterilized distilled water. The fungus was reisolated from symptomatic tissues of inoculated plants and was identified by sequencing the partial EF1-α gene again and was identified as F. falciforme (FSSC 3 + 4) (O’Donnell et al. 2008) based on its morphological characteristics, genetic analysis, and pathogenicity test, fulfilling Koch’s postulates. The molecular identification was confirmed via BLAST on the FusariumID and Fusarium MLST databases. Although FSSC has been previously reported causing root rot in chickpea in USA, Chile, Spain, Cuba, Iran, Poland, Israel, Pakistan and Brazil, to our knowledge this is the first report of root rot in chickpea caused by F. falciforme in Mexico. This is important for chickpea producers and chickpea breeding programs.


Plant Disease ◽  
2013 ◽  
Vol 97 (9) ◽  
pp. 1246-1246 ◽  
Author(s):  
H. H. Zheng ◽  
X. H. Wu

Potato (Solanum tuberosum L.) is grown worldwide as a major food crop. Potato early blight is an important disease caused by Alternaria solani (4). In 2011, diseased potato leaves with blight symptoms were collected from 21 sites (incidence averaged 60% for about 2,000 ha of potato fields examined) in Gansu Province, northwest China. Small pieces of tissue taken from the margin between healthy and diseased tissues were surface-disinfected in 0.3% NaOCl for 2 min, rinsed with sterilized, distilled water, then placed on potato dextrose agar (PDA) at 25°C in the dark. Two of 24 Alternaria isolates from single-spore cultures were identified preliminarily as A. tenuissima, and the remaining isolates as A. solani or A. alternata, based on morphological traits. Colony appearance on potato carrot agar (PCA) was loosely cottony under a day/night cycle of 8 h fluorescent light/16 h dark at 22°C for 7 days (3). The isolates were characterized by formation of unbranched conidial chains up to 12 conidia in length, with one or two lateral branches forming occasionally. Conidia were typically ovoid to obclavate, and ranged from 20.4 to 42.4 × 7.7 to 13.2 μm. Transverse septa and longitudinal septa of conidia varied from 1 to 6 and 0 to 2, respectively. Short conidiophores arose singly and were 15.1 to 76.8 μm long by 2.4 to 6.2 μm wide. The internal transcribed spacer (ITS) region of rDNA and partial coding sequence of a histone gene were amplified from genomic DNA of the two A. tenuissima isolates using the ITS1/ITS4 and H3-1a/H3-1b primers (2), respectively. The ITS sequences of the two isolates (GenBank Accession Nos. JX495165 and JX495166) were 100% identical to those of A. tenuissima strains sdau 07-100 and BL08-3 (GQ871507 and AB470887), as well as to other Alternaria species, but the partial histone gene sequences (JX495167 and JX495168) were 99% identical to those of A. tenuissima isolates CR27, MA1, MA6, and CN-L-01 (AF404622, AF404633, AF404634, and EF371552, respectively) with less similarity to those of other Alternaria spp. Therefore, the isolates were identified as A. tenuissima based on morphological and molecular characteristics. Pathogenicity tests were conducted by inoculating detached leaves (30 per isolate) from 45-day-old plants of potato cv. Favorita with 20 μl drops (one drop per leaf) of a conidial suspension containing 106 conidia/ml in sterilized, distilled water. Thirty control leaves were inoculated similarly with sterilized, distilled water. Inoculated leaves were incubated in chambers at 25°C and 90% RH with a 12-h photoperiod/day. After 7 days, symptoms on the inoculated leaves were similar to those naturally occurring on the original plants, and the two cultures were reisolated consistently from those leaves, and the species identity was confirmed by morphological and molecular characteristics, fulfilling Koch's postulates. The control leaves remained asymptomatic and Alternaria was not isolated from those leaves. Alternaria blight of potato caused by A. tenuissima was previously detected in Iran (1). To our knowledge, this is the first report of A. tenuissima causing blight on potatoes in China. References: (1) S. T. Ardestani et al. Iran. J. Plant Pathol. 45:83, 2010. (2) N. L. Glass and G. C. Donaldson. Appl. Environ. Microbiol. 61:1323, 1995. (3) E. G. Simmons. Alternaria. An Identification Manual. CBS Fungal Biodiversity Centre, Utrecht, the Netherlands, 2007. (4) J. E. van der Waals et al. Plant Dis. 88:959, 2004.


Plant Disease ◽  
2009 ◽  
Vol 93 (9) ◽  
pp. 965-965 ◽  
Author(s):  
S. Sanogo ◽  
B. F. Etarock

Wilted plants of Valencia market-type peanut (Arachis hypogaea L.) were found in two fields in August 2006 and three fields in September 2007 in Curry County, New Mexico. Plants had extensive, light brown discoloration and interstices of greenish tissue on blighted stems and branches across plant canopy levels. Disease incidence was less than 1% with infected plants in groups of two to five within each field. Five 4-cm stem segments were taken from each of five diseased plants in each field, submerged for 5 min in 0.5% NaOCl, rinsed in sterile distilled water, cut into 0.5-cm pieces, and plated on acidified potato dextrose agar (APDA). Mycelial colonies, recovered from plant tissues and incubated on APDA at 25°C under a 12-h photoperiod, were white and floccose with light green-yellow areas becoming visible within 7 to 10 days of incubation. Black stromata formed, spreading in a concentric pattern or scattered as large masses on APDA. Ostiolate and rostrate pycnidia with long beaks more than 500 μm were observed. Alpha conidia exuded from pycnidia in creamy-to-yellowish drops and were ellipsoid and biguttulate with an average length of 6.6 μm and width of 2.10 μm. Colonies were identified as Phomopsis longicolla Hobbs (1). PCR amplification of the internal transcribed spacer (ITS) region of rDNA of three isolates using primer pair ITS4/ITS5 (3) was followed by sequencing and BLAST analysis and showed a 95% homology with the sequence of the ITS region of rDNA of P. longicolla (1). Digestion of PCR-amplified DNA with AluI yielded two restriction fragments of sizes consistent with those reported for P. longicolla (2). Koch's postulates were established with three isolates tested for pathogenicity on Valencia peanut cv. Val-C at the four- to six-leaf stage using stem and root inoculations. Stems were injected with conidial suspension (106 conidia/ml) with a hypodermic needle or stabbed at the cotyledon axils with a sterile toothpick dabbed into an exuded conidial drop. Control plants were stem injected with distilled water or stabbed with a sterile toothpick. For root inoculation, plants were uprooted, washed free from soil, and inserted up to the crown into a 50-ml plastic test tube containing 40 ml of conidial suspension (25,000 conidia/ml) or sterile distilled water. For each method, eight plants were inoculated with each isolate, and four plants served as control. All inoculation methods were performed on the same day and repeated three times. Inoculated plants were covered with a clear plastic bag that was removed after 4 days. Plants were placed at 30°C under a 14-h photoperiod for 2 weeks. On stem-inoculated plants, light-to-dark brown discoloration formed at the sites of inoculation and expanded up and down the stems, which became brown, resulting in plant death within 10 to 14 days. On root-inoculated plants, browning of crown areas progressed up the stems, followed by plant death. P. longicolla was recovered from all inoculated plants. To our knowledge, this is the first report of P. longicolla on peanut in New Mexico and the United States. This report demonstrates the association of P. longicolla with peanut and its ability to cause stem blight. The occurrence and extent of this disease may be of a concern, because on other crops, Phomopsis diseases can cause significant reduction in seed germination, plant vigor, and yield. References: (1) T. W. Hobbs et al. Mycologia 77:535, 1985. (2) A. W. Zhang et al. Plant Dis. 81:1143, 1997. (3) A. W. Zhang et al. Phytopathology 88:1306, 1998.


Plant Disease ◽  
2012 ◽  
Vol 96 (9) ◽  
pp. 1383-1383 ◽  
Author(s):  
L. M. Rodriguez-Salamanca ◽  
T. B. Enzenbacher ◽  
J. M. Byrne ◽  
C. Feng ◽  
J. C. Correll ◽  
...  

In September 2010, celery plants with leaf cupping and petiole twisting were observed in commercial production fields located in Barry, Kent, Newago, and Van Buren Counties in Michigan. Long, elliptical lesions were observed on petioles but signs (mycelia, conidia, or acervuli) were not readily observed. Celery petioles were incubated in humid chambers (acrylic boxes with wet paper towels). After 24 h, conidia corresponding to the genus Colletotrichum were observed. Isolations were performed by excising pieces of celery tissue from the lesion margin and placing them on potato dextrose agar (PDA) amended with 30 ppm of rifampicin and 100 ppm of ampicillin. Plates were incubated at 21 ± 2°C under fluorescent light for 5 days. Fungal colony morphology was gray with salmon-colored masses of spores when viewed from above, and carmine when viewed from below. Isolates were single-spored and placed on 30% glycerol in –20°C, and cryoconservation media (20% glycerol, 0.04% yeast extract, 0.1% malt extract, 0.04% glucose, 0.02% K2HPO4) at –80°C. Conidia were 8.5 to 12.0 × 2.8 to 4.0 μm and straight fusiform in shape. Three isolates were confirmed as C. acutatum sensu lato based on sequences of the internal transcribed spacer (ITS) region of the nuclear ribosomal RNA and the 1-kb intron of the glutamine synthase gene (3), both with 100% similarity with Glomerella acutata sequences. Sequences were submitted to GenBank (Accession Nos. JQ951599 and JQ951600 for ITS and GS, respectively). Additionally, C. acutatum specific primer CaIntg was used in combination with the primer ITS4 on 54 isolates from symptomatic celery plants, obtaining the expected 490-pb fragment (1). Koch's postulates were completed by inoculating 4-week-old celery seedlings of cultivars Sabroso, Green Bay, and Dutchess using three plants per cultivar. Prior to inoculation, seedlings were incubated for 16 h in high relative humidity (≥95%) by enclosing the plants in humid chambers. Seven-day-old C. acutatum s. l. colonies were used to prepare the inoculum. Seedlings were spray-inoculated with a C. acutatum s. l. conidial suspension of 1 × 106 conidia/ml in double-distilled water plus Tween 0.01%. Two control seedlings per cultivar were sprayed with sterile, double-distilled water plus 0.01% Tween. Plants were enclosed in bags for 96 h post inoculation and incubated in a greenhouse at 27°C by day/20°C by night with a 16-h photoperiod. Leaf curling was observed on all inoculated plants of the three cultivars 4 days after inoculation (DAI). Petiole lesions were observed 14 to 21 DAI. Conidia were observed in lesions after incubation in high humidity at 21 ± 2°C for 24 to 72 h. Symptomatic tissue was excised and cultured onto PDA and resulted in C. acutatum colonies. Control plants remained symptomless. C. acutatum (4) and C. orbiculare (2) were reported to cause celery leaf curl in Australia in 1966 (2,4). To our knowledge, this is the first report of C. acutatum s. l. infecting celery in Michigan. References: (1) A. E. Brown et al. Phytopathology 86:523, 1996. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab., USDA-ARS. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , 10 September 2010. (3) J. C. Guerber et al. Mycologia 95:872, 2003. (4) D. G. Wright and J. B. Heaton. Austral. Plant Pathol. 20:155, 1991.


Sign in / Sign up

Export Citation Format

Share Document