scholarly journals Alternaria malicola sp. nov., a New Pathogen Causing Fruit Spot on Apple in China

Plant Disease ◽  
2018 ◽  
Vol 102 (7) ◽  
pp. 1273-1282 ◽  
Author(s):  
J. L. Dang ◽  
M. L. Gleason ◽  
L. N. Li ◽  
C. Wang ◽  
C. K. Niu ◽  
...  

Alternaria spp. are pathogens of several diseases that pose significant threats to apple production. Several putative Alternaria sp. isolates were obtained from lesions of a disease commonly referred to as black dot on apple fruit in Shaanxi Province, China. Pathogenicity tests using mycelial plugs and conidial suspensions indicated that this isolate could cause leaf blotch, as well as moldy core and black dot on fruit. On the basis of sequence analysis of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), RNA polymerase second largest subunit, and translation elongation factor 1-α, an isolate clustered with the Alternaria sect. Ulocladioides. By combining GAPDH, major allergen Alta1, mating type protein 1-2-1, and the AGA1 gene sequence analysis and morphological description, the isolates were identified as a new species named Alternaria malicola. Our finding expands the documented diversity of apple pathogens within the genus Alternaria and clarifies the taxonomy of the pathogen assemblage that may be associated with three apple diseases.

Phytotaxa ◽  
2020 ◽  
Vol 440 (2) ◽  
pp. 89-100
Author(s):  
NABAHAT BESSADAT ◽  
BRUNO HAMON ◽  
NELLY BATAILLE-SIMONEAU ◽  
KIHAL MABROUK ◽  
PHILIPPE SIMONEAU

During a biodiversity survey of Alternaria associated with leaf spot and blight of Solanaceae, a large collection of strains was obtained from samples collected in north-western regions of Algeria in 2013–2018 growing seasons. Amongst these strains, three isolates recovered from tomato and potato had morphological traits different from that usually observed for Alternaria species previously reported on Solanaceae. Based on analysis of a sequence dataset corresponding to portions of the glyceraldehyde-3-phosphate dehydrogenase (gpd), translation elongation factor 1-alpha (tef1) and RNA polymerase second largest subunit (rpb2) genes along with morphological observations, isolates were identified as a new species in the section Japonicae. This novel species, described here as Alternaria telliensis, is phylogenetically and morphologically distinct from A. japonica and A. nepalensis in this section. Pathogenicity tests were performed and isolates were found to be weakly pathogenic to tomato and potato (Solanaceae) while highly aggressive on radish, cabbage and turnip (Brassicaceae) plants.


Diversity ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 218 ◽  
Author(s):  
Jessica Sánchez ◽  
Paola Iturralde ◽  
Alma Koch ◽  
Cristina Tello ◽  
Dennis Martinez ◽  
...  

Andean blackberry (Rubus glaucus Benth) plants from the provinces of Tungurahua and Bolivar (Ecuador) started showing symptoms of black foot disease since 2010. Wilted plants were sampled in both provinces from 2014 to 2017, and fungal isolates were obtained from tissues surrounding necrotic lesions in the cortex of the roots and crown. Based on morphological characteristics and DNA sequencing of histone 3 and the translation elongation factor 1α gene, isolates were identified as one of seven species, Ilyonectria vredehoekensis, Ilyonectria robusta, Ilyonectria venezuelensis, Ilyonectria europaea, Dactylonectria torresensis, or Dactylonectria novozelandica. Pathogenicity tests with isolates from each species, excluding I. europaea and D. novozelandica whose isolates were lost due to contamination, confirmed that the four species tested can produce black foot disease symptoms in Andean blackberry. This is the first report of Dactylonectria and Ilyonectria species causing black foot disease of Andean blackberry.


Plant Disease ◽  
2015 ◽  
Vol 99 (12) ◽  
pp. 1678-1688 ◽  
Author(s):  
Antonia Carlucci ◽  
Francesca Cibelli ◽  
Francesco Lops ◽  
Maria Luisa Raimondo

Botryosphaeriaceae spp. have a cosmopolitan distribution and a wide range of plant hosts. Over the last 15 years, worldwide, 21 species of this family have been associated with grapevine trunk diseases that cause cankers and dieback on grapevines. Here, we surveyed vineyards of Vitis vinifera ‘Lambrusco’, ‘Sangiovese’, and ‘Montepulciano’ in three areas of the Foggia province (Cerignola, Foggia, and San Severo) in southern Italy. Wood samples from grapevines showing general decline, dieback, cankers, and wood and foliar discoloration yielded 344 fungal isolates identified as Botryosphaeriaceae spp. A phylogenetic study combining internal transcribed spacer and translation elongation factor 1-α sequences of 60 representative isolates identified nine botryosphaeriaceous species: Botryosphaeria dothidea, Diplodia corticola, D. mutila, D. seriata, Dothiorella iberica, Do. sarmentorum, Lasiodiplodia citricola, L. theobromae, and Neofusicoccum parvum. Pathogenicity tests confirmed that all nine species cause canker and dieback of grapevines. However, this is the first report of L. citricola as causal agent of wood cankers and dieback of grapevine. To date, including L. citricola, there are 25 botryosphaeriaceous species associated with V. vinifera worldwide, of which 12 have been reported for grapevines in Italy.


2020 ◽  
Vol 59 (1) ◽  
pp. 213-218
Author(s):  
Dalia AIELLO ◽  
Giorgio GUSELLA ◽  
Alberto FIORENZA ◽  
Vladimiro GUARNACCIA ◽  
Giancarlo POLIZZI

During June 2018, several symptomatic fig (Ficus carica) cuttings, showing twig blight, subcortical discolouration and apical dieback were collected from a nursery in Catania province, Sicily (Italy). Isolations from diseased tissue consistently showed the presence of the same fungal colony. Morphology of the fungal isolates together with sequence data of the nuclear rDNA internal transcriber spacer (ITS) region, translation elongation factor 1-alpha (tef1) gene and partial beta-tubulin (tub2) gene of representatives isolates revealed the presence of the fungus Neofusicoccum parvum. Pathogenicity tests were conducted by inoculating fig cuttings with mycelial plugs. After 10 days, the inoculated plants developed cankers similar to those observed in the greenhouse and after 26 days all inoculated plants were dead. To the best of our knowledge, this is the first report worldwide of N. parvum causing disease on this host.


Plant Disease ◽  
2020 ◽  
Vol 104 (10) ◽  
pp. 2551-2555
Author(s):  
Luoye Li ◽  
Mengying Lei ◽  
Honghong Wang ◽  
Xiaozhu Yang ◽  
Mebeaselassie Andargie ◽  
...  

Ormosia pinnata (Lour.) Merr. is an important tree used for landscape and plant recovery of barren slopes in China. During an investigation of plant disease on landscape trees in 2018, a dieback was observed on O. pinnata trees in Guangzhou, Guangdong Province, China. Symptoms were characterized by initial dryness of the twigs and eventual death of the whole branch of the tree. Isolations from symptomatic branches yielded 13 isolates including two main morphotypes. Pathogenicity tests showed that isolate GDOP1 from Type I caused dieback of O. pinnata. Based on morphological characteristics and molecular analysis of the internal transcribed spacer rDNA (ITS1-5.8S-ITS2) and partial sequence of the translation elongation factor 1α (EF1-α), the fungus causing dieback on O. pinnata was identified as Lasiodiplodia pseudotheobromae. This is the first report of L. pseudotheobromae infecting O. pinnata in the world.


Plant Disease ◽  
2019 ◽  
Vol 103 (10) ◽  
pp. 2548-2558 ◽  
Author(s):  
Yuchun Wang ◽  
Fei Xiong ◽  
Qinhua Lu ◽  
Xinyuan Hao ◽  
Mengxia Zheng ◽  
...  

Several Pestalotiopsis-like species cause gray blight disease in tea plants, resulting in severe tea production losses. However, systematic and comprehensive research on the diversity, geographical distribution, and pathogenicity of pathogenic species associated with tea plants in China is limited. In this study, 168 Pestalotiopsis-like isolates were obtained from diseased tea plant leaves from 13 primary tea-producing provinces and cities in China. Based on a multilocus (internal transcribed spacer, translation elongation factor 1-α, and β-tubulin gene region) phylogenetic analysis coupled with an assessment of conidial characteristics, 20 Neopestalotiopsis unclassified isolates, seven Pestalotiopsis species, including two novel (Pestalotiopsis menhaiensis and Pestalotiopsis sichuanensis), four known (Pestalotiopsis camelliae, Pestalotiopsis chamaeropis, Pestalotiopsis kenyana, and Pestalotiopsis rhodomyrtus) and one indistinguishable species, and three Pseudopestalotiopsis species, including two known (Pseudopestalotiopsis camelliae-sinensis and Pseudopestalotiopsis chinensis) and one indistinguishable species, were identified. This study is the first to evaluate Pestalotiopsis chamaeropis on tea plants in China. The geographical distribution and pathogenicity tests showed Pseudopestalotiopsis camelliae-sinensis to be the dominant cause of gray blight of tea plants in China. In vitro antifungal assays demonstrated that theobromine not only derepressed mycelial growth of the 29 representative isolates but also increased their growth. Correlation analysis revealed a linear positive relationship between the mycelial growth rate and pathogenicity (P = 0.0148).


Plant Disease ◽  
2019 ◽  
Vol 103 (9) ◽  
pp. 2397-2411 ◽  
Author(s):  
Mohamed T. Nouri ◽  
Daniel P. Lawrence ◽  
Leslie A. Holland ◽  
David A. Doll ◽  
Craig E. Kallsen ◽  
...  

A survey was conducted during 2015 and 2016 in pistachio orchards throughout the San Joaquin Valley of California to investigate the occurrence of canker diseases and identify the pathogens involved. Cankers and dieback symptoms were observed mainly in orchards aged >15 years. Symptoms of canker diseases included brown to dark brown discoloration of vascular tissues, wood necrosis, and branch dieback. In total, 58 fungal isolates were obtained from cankers and identified based on multilocus phylogenetic analyses (internal transcribed spacer, glyceraldehyde 3-phosphate dehydrogenase, β-tubulin, calmodulin, actin 1, and translation elongation factor 1α) representing 11 fungal species: Colletotrichum karstii, Cytospora californica, Cytospora joaquinensis, Cytospora parapistaciae, Cytospora pistaciae, Diaporthe ambigua, Didymella glomerata, Diplodia mutila, Neofusicoccum mediterraneum, Phaeoacremonium canadense, and Schizophyllum commune. Pathogenicity tests conducted in the main pistachio cultivars Kerman, Golden Hills, and Lost Hills using the mycelium-plug method indicated that all fungal species were pathogenic to Pistacia vera. All species tested caused cankers in pistachio branches, although virulence among species varied from high to moderate. Overall, N. mediterraneum and Cytospora spp. were the most widespread and virulent species associated with canker diseases of pistachio in California.


Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 727-738 ◽  
Author(s):  
Yongyan Chen ◽  
Qixing Zhou ◽  
Stephen E. Strelkov ◽  
Sheau-Fang Hwang

Canola (Brassica napus) is one of the most economically important oilseed crops in Canada. Fusarium seedling blight is a root disease with the potential to cause severe yield reductions in canola. Fusarium spp. are commonly isolated root pathogens from fields in Alberta. Fusarium infection can also cause root rot in adult plants. In this study, 128 isolates identified as Fusarium spp. were recovered from field soils in central Alberta and from the roots of diseased canola plants with typical Fusarium seedling blight symptoms. Six species of Fusarium were identified, with Fusarium acuminatum as the predominant species (57 of 128 isolates, 44.5%). Phylogenetic analyses based on the translation elongation factor 1-α and the internal transcribed spacer sequence data were used for evaluation of genetic variations, and also used for Fusarium spp. identification in combination with morphological characteristics and polymerase chain reaction-based analyses. Based on disease ratings in pathogenicity tests, six isolates of F. avenaceum showed high aggressiveness on canola. Also, the aggressiveness varied within all Fusarium spp. No correlation was observed between aggressiveness and the geographic origin of the isolates.


Plant Disease ◽  
2018 ◽  
Vol 102 (1) ◽  
pp. 98-106 ◽  
Author(s):  
Yingjuan Chen ◽  
Liang Zeng ◽  
Na Shu ◽  
Maoyuan Jiang ◽  
Han Wang ◽  
...  

Gray blight of tea, caused by several Pestalotiopsis-like species, is one of the most destructive foliar diseases in tea cultivation yet the characteristics of these pathogens have not been confirmed until now. With morphological and multigene phylogenetic analyses, we have identified the gray blight fungi as Pseudopestalotiopsis camelliae-sinensis, Neopestalotiopsis clavispora, and Pestalotiopsis camelliae. Phylogenetic analyses derived from the combined internal transcribed spacer, β-tubulin, and translation elongation factor 1-α gene regions successfully resolved most of the Pestalotiopsis-like species used in this study with high bootstrap supports and revealed three major clusters representing these three species. Differences in colony appearance and conidia morphology (shape, size, septation, color and length of median cells, and length and number of apical and basal appendages) were consistent with the phylogenetic grouping. Pathogenicity tests validated that all three species isolated from tea leaves were causal agents of gray blight disease on tea plant (Camellia sinensis). This is the first description of the characteristics of the three species Pseudopestalotiopsis camelliae-sinensis, N. clavispora, and Pestalotiopsis camelliae as causal agents of tea gray blight disease in China.


Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 853
Author(s):  
Alina S. Puig ◽  
Mike C. Winterstein

Mango (Mangifera indica) is an economically significant crop, and is affected by dieback in nearly all commercial production areas. Due to the wide range of organisms previously associated with these disease symptoms in Florida, isolations and pathogenicity tests were carried out to determine the causal organism. The pathogen was identified as Neofusicoccum batangarum based on genetic sequences from three loci (internal transcribed spacer of the rDNA (ITS), β-tubulin (BT), and translation elongation factor 1-α (EF)), recommended for members of the Botryosphaeriaceae family. Possible infection routes were determined by inoculating wounded and unwounded stems with N. batangarum. Trees wounded prior to pathogen inoculation developed larger lesions (5.85 cm ± 1.51) than unwounded trees (0.51 cm ± 0.48), p < 0.0003. In addition, lesions only developed at a small number of inoculation sites in the absence of wounds (14.3%), compared to 93% when stems were wounded. No necrosis was observed in the negative controls. This study provides molecular data on N. batangarum, and evidence of its role causing mango dieback in Florida.


Sign in / Sign up

Export Citation Format

Share Document