scholarly journals Pestalotiopsis-Like Species Causing Gray Blight Disease on Camellia sinensis in China

Plant Disease ◽  
2018 ◽  
Vol 102 (1) ◽  
pp. 98-106 ◽  
Author(s):  
Yingjuan Chen ◽  
Liang Zeng ◽  
Na Shu ◽  
Maoyuan Jiang ◽  
Han Wang ◽  
...  

Gray blight of tea, caused by several Pestalotiopsis-like species, is one of the most destructive foliar diseases in tea cultivation yet the characteristics of these pathogens have not been confirmed until now. With morphological and multigene phylogenetic analyses, we have identified the gray blight fungi as Pseudopestalotiopsis camelliae-sinensis, Neopestalotiopsis clavispora, and Pestalotiopsis camelliae. Phylogenetic analyses derived from the combined internal transcribed spacer, β-tubulin, and translation elongation factor 1-α gene regions successfully resolved most of the Pestalotiopsis-like species used in this study with high bootstrap supports and revealed three major clusters representing these three species. Differences in colony appearance and conidia morphology (shape, size, septation, color and length of median cells, and length and number of apical and basal appendages) were consistent with the phylogenetic grouping. Pathogenicity tests validated that all three species isolated from tea leaves were causal agents of gray blight disease on tea plant (Camellia sinensis). This is the first description of the characteristics of the three species Pseudopestalotiopsis camelliae-sinensis, N. clavispora, and Pestalotiopsis camelliae as causal agents of tea gray blight disease in China.

Plant Disease ◽  
2019 ◽  
Vol 103 (10) ◽  
pp. 2548-2558 ◽  
Author(s):  
Yuchun Wang ◽  
Fei Xiong ◽  
Qinhua Lu ◽  
Xinyuan Hao ◽  
Mengxia Zheng ◽  
...  

Several Pestalotiopsis-like species cause gray blight disease in tea plants, resulting in severe tea production losses. However, systematic and comprehensive research on the diversity, geographical distribution, and pathogenicity of pathogenic species associated with tea plants in China is limited. In this study, 168 Pestalotiopsis-like isolates were obtained from diseased tea plant leaves from 13 primary tea-producing provinces and cities in China. Based on a multilocus (internal transcribed spacer, translation elongation factor 1-α, and β-tubulin gene region) phylogenetic analysis coupled with an assessment of conidial characteristics, 20 Neopestalotiopsis unclassified isolates, seven Pestalotiopsis species, including two novel (Pestalotiopsis menhaiensis and Pestalotiopsis sichuanensis), four known (Pestalotiopsis camelliae, Pestalotiopsis chamaeropis, Pestalotiopsis kenyana, and Pestalotiopsis rhodomyrtus) and one indistinguishable species, and three Pseudopestalotiopsis species, including two known (Pseudopestalotiopsis camelliae-sinensis and Pseudopestalotiopsis chinensis) and one indistinguishable species, were identified. This study is the first to evaluate Pestalotiopsis chamaeropis on tea plants in China. The geographical distribution and pathogenicity tests showed Pseudopestalotiopsis camelliae-sinensis to be the dominant cause of gray blight of tea plants in China. In vitro antifungal assays demonstrated that theobromine not only derepressed mycelial growth of the 29 representative isolates but also increased their growth. Correlation analysis revealed a linear positive relationship between the mycelial growth rate and pathogenicity (P = 0.0148).


Plant Disease ◽  
2019 ◽  
Vol 103 (11) ◽  
pp. 2786-2797 ◽  
Author(s):  
Shuangshuang Wang ◽  
Xiaozeng Mi ◽  
Zhiran Wu ◽  
Lixin Zhang ◽  
Chaoling Wei

Gray blight disease, caused by Pestalotiopsis-like fungi, is one of the deadliest threats to tea (Camellia sinensis) production. However, little information is known about the traits and characteristics of this pathogen. Here, a systematic survey was performed, and a total of 20 representative isolates were obtained from the leaves of tea plants affected by gray blight in two main tea plantations located in Anhui Province, China. Further analyses showed that two isolates were identified as Neopestalotiopsis ellipsospora, three isolates were regarded as Pseudopestalotiopsis chinensis, one isolate was considered as Pseudopestalotiopsis camelliae-sinensis, and the remaining isolates belonged to Pseudopestalotiopsis spp., on the basis of morphological characteristics and multigene phylogenetic analyses of the internal transcribed spacer, β-tubulin, and translation elongation factor 1-α. Pathogenicity tests indicated that there were significant differences in virulence among the Neopestalotiopsis and Pseudopestalotiopsis isolates when inoculated on the leaves of the tea plant (C. sinensis ‘Shuchazao’). Furthermore, varied pathogenicity was also observed for the same isolate when inoculated on different varieties of tea plants. To our knowledge, this is the first record of Neopestalotiopsis ellipsospora and Pseudopestalotiopsis chinensis causing gray blight disease of tea plants in China.


Phytotaxa ◽  
2019 ◽  
Vol 415 (4) ◽  
pp. 179-188
Author(s):  
XIANG-NYU CHEN ◽  
MING ZHANG ◽  
TAI-HUI LI ◽  
NIAN-KAI ZENG

Heimioporus sinensis, collected from tropical and subtropical areas of China, is introduced as a new species based on both morphological characters and molecular data. The species is characterized by the purplish red to deep magenta pileus, the reticulated stipe, the irregularly reticulate to reticulate-alveolate basidiospores 11.5–13.5 × 8–9.5 μm, and a trichodermal to intricately trichodermal pileipellis. Phylogenetic analyses based on the nuc 28S rDNA D1-D2 domains (28S) and the translation elongation factor 1-α gene (tef1-α) showed that H. sinensis is a distinct member of the genus Heimioporus in the subfamily Xerocomoideae.


Phytotaxa ◽  
2019 ◽  
Vol 425 (5) ◽  
pp. 259-268
Author(s):  
XIAO-XIAO FENG ◽  
JIA-JIE CHEN ◽  
GUO-RONG WANG ◽  
TING-TING CAO ◽  
YONG-LI ZHENG ◽  
...  

During an exploration of plant pathogens in vegetables occuring in Zhejiang province, China, a novel fungal species, was found. Three strains ZJUP0033-4, ZJUP0038-3 and ZJUP0132 were isolated from black round lesions in the stems and leaves of Amaranthus sp. Phylogenetic analyses based on sequences from four genes including rDNA internal transcribed spacer (ITS), translation elongation factor 1-α (EF1-α), histone (HIS) and β-tubulin (TUB) indicated that D. sinensis clustered in a distinct clade closely related to D. neoarctii, D. angelicae, D. subordinaria, D. arctii, D. cuppatea, D. lusitanicae, D. novem, D. infecunda, D. ganjae and D. manihotia. Morphologically, D. sinensis is distinguished by brown, scattered, globose pycnidia and ellipsoid alpha conidia with bi- to multiguttulate.


Phytotaxa ◽  
2020 ◽  
Vol 449 (2) ◽  
pp. 149-163
Author(s):  
DHANUSHKA N. WANASINGHE ◽  
PETER E. MORTIMER ◽  
CHANOKNED SENWANNA ◽  
RATCHADAWAN CHEEWANGKOON

During a survey of saprobic microfungi in Thailand, a dothideomycetous fungus was found on a dead twig of Delonix regia, on the Chiang Mai University campus. This fungus is characterized by fully immersed ascomata under a small blackened pseudoclypeus, pseudoparenchymatous peridium, cellular pseudoparaphyses, cylindrical-clavate asci with a distinct pedicel, overlapping 3–4-seriate, pale to dark brown, broadly fusoid, 7–9-transversally septate ascospores with a vertical septum in nearly all median cells. Multigene phylogenetic analyses, using partial sequences from the 28S nrRNA gene (LSU), 18S nrRNA gene (SSU), internal transcribed spacer regions and intervening 5.8S nrRNA gene (ITS) of the nrDNA operon and the translation elongation factor 1-alpha region (TEF) demonstrated a monophyletic affiliation of the new strain, accommodating the species of Phaeoseptum in the family Phaeoseptaceae. With further morphological and phylogenetic investigations, we justify the new fungus as a novel species, Phaeoseptum hydei in Phaeoseptaceae. Detailed descriptions and illustrations are provided for Phaeoseptum hydei and this novel species compared with the remaining species found in the genus. An updated checklist of microfungi recorded on Delonix regia from around the world is also provided.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11435
Author(s):  
Jessa P. Ata ◽  
Kelly S. Burns ◽  
Suzanne Marchetti ◽  
Isabel A. Munck ◽  
Ludwig Beenken ◽  
...  

Increasing prevalence of conifer needle pathogens globally have prompted further studies on pathogen identification and a better understanding of phylogenetic relationships among needle pathogens. Several Lophodermella species can be aggressive pathogens causing needle cast in natural pine forests in the USA and Europe. However, their relationships with other Rhytismataceae species have historically been based on similarities of only limited phenotypic characters. Currently, no molecular studies have been completed to elucidate their relationships with other Lophodermella needle pathogens. This study collected and sequenced three gene loci, namely: internal transcribed spacer, large ribosomal subunit, and translation elongation factor 1-alpha, from five Lophodermella needle pathogens from North America (L. arcuata, L. concolor, L. montivaga) and Europe (L. conjuncta and L. sulcigena) to distinguish phylogeny within Rhytismatacaeae, including Lophophacidium dooksii. Phylogenetic analyses of the three loci revealed that all but L. conjuncta that were sampled in this study consistently clustered in a well-supported clade within Rhytismataceae. The multi-gene phylogeny also confirmed consistent nesting of L. dooksii, a needle pathogen of Pinus strobus, within the clade. Potential synapomorphic characters such as ascomata position and ascospore shape for the distinct clade were also explored. Further, a rhytismataceous species on P. flexilis that was morphologically identified as L. arcuata was found to be unique based on the sequences at the three loci. This study suggests a potential wider range of host species within the genus and the need for genetic characterization of other Lophodermella and Lophophacidium species to provide a higher phylogenetic resolution.


Phytotaxa ◽  
2021 ◽  
Vol 512 (1) ◽  
Author(s):  
XIANGFU LIU ◽  
SAOWALUCK TIBPROMMA ◽  
FAN ZHANG ◽  
JIANCHU XU ◽  
K.W.T. CHETHANA ◽  
...  

In this paper we describe a new species of cave fungus belonging to Sporocadaceae (Amphisphaeriales), collected from Gem Cave, Fumin County, Yunnan Province, China. Initial morphological observations confirmed that our fungal collection is a pestalotioid species. Phylogenetic analyses of combined internal transcribed spacer (ITS), β-tubulin (TUB) and translation elongation factor 1-alpha (TEF1α) gene sequence dataset confirmed that our fungus forms an independent branch within Neopestalotiopsis. Thus, we describe our fungus as a new species of Neopestalotiopsis based on both morphology and multigene phylogeny. This is the first-ever report of Neopestalotiopsis from a cave habitat. A full description, micrographs and a phylogenetic tree showing the placement of the new species are provided.


MycoKeys ◽  
2018 ◽  
Vol 35 ◽  
pp. 1-25 ◽  
Author(s):  
Yu Pei Tan ◽  
Pedro W. Crous ◽  
Roger G. Shivas

Several unidentified specimens of Curvularia deposited in the Queensland Plant Pathology Herbarium were re-examined. Phylogenetic analyses based on sequence data of the internal transcribed spacer region, partial fragments of the glyceraldehyde-3-phosphate dehydrogenase and the translation elongation factor 1-α genes, supported the introduction of 13 novel Curvularia species. Eight of the species described, namely, C.beasleyi sp. nov., C.beerburrumensis sp. nov., C.eragrosticola sp. nov., C.kenpeggii sp. nov., C.mebaldsii sp. nov., C.petersonii sp. nov., C.platzii sp. nov. and C.warraberensis sp. nov., were isolated from grasses (Poaceae) exotic to Australia. Only two species, C.lamingtonensis sp. nov. and C.sporobolicola sp. nov., were described from native Australian grasses. Two species were described from hosts in other families, namely, C.coatesiae sp. nov. from Litchichinensis (Sapindaceae) and C.colbranii sp. nov. from Crinumzeylanicum (Amaryllidaceae). Curvulariareesii sp. nov. was described from an isolate obtained from an air sample. Furthermore, DNA sequences from ex-type cultures supported the generic placement of C.neoindica and the transfer of Drechsleraboeremae to Curvularia.


Plant Disease ◽  
2019 ◽  
Vol 103 (9) ◽  
pp. 2397-2411 ◽  
Author(s):  
Mohamed T. Nouri ◽  
Daniel P. Lawrence ◽  
Leslie A. Holland ◽  
David A. Doll ◽  
Craig E. Kallsen ◽  
...  

A survey was conducted during 2015 and 2016 in pistachio orchards throughout the San Joaquin Valley of California to investigate the occurrence of canker diseases and identify the pathogens involved. Cankers and dieback symptoms were observed mainly in orchards aged >15 years. Symptoms of canker diseases included brown to dark brown discoloration of vascular tissues, wood necrosis, and branch dieback. In total, 58 fungal isolates were obtained from cankers and identified based on multilocus phylogenetic analyses (internal transcribed spacer, glyceraldehyde 3-phosphate dehydrogenase, β-tubulin, calmodulin, actin 1, and translation elongation factor 1α) representing 11 fungal species: Colletotrichum karstii, Cytospora californica, Cytospora joaquinensis, Cytospora parapistaciae, Cytospora pistaciae, Diaporthe ambigua, Didymella glomerata, Diplodia mutila, Neofusicoccum mediterraneum, Phaeoacremonium canadense, and Schizophyllum commune. Pathogenicity tests conducted in the main pistachio cultivars Kerman, Golden Hills, and Lost Hills using the mycelium-plug method indicated that all fungal species were pathogenic to Pistacia vera. All species tested caused cankers in pistachio branches, although virulence among species varied from high to moderate. Overall, N. mediterraneum and Cytospora spp. were the most widespread and virulent species associated with canker diseases of pistachio in California.


Sign in / Sign up

Export Citation Format

Share Document