scholarly journals Diversity of Pestalotiopsis-Like Species Causing Gray Blight Disease of Tea Plants (Camellia sinensis) in China, Including two Novel Pestalotiopsis Species, and Analysis of Their Pathogenicity

Plant Disease ◽  
2019 ◽  
Vol 103 (10) ◽  
pp. 2548-2558 ◽  
Author(s):  
Yuchun Wang ◽  
Fei Xiong ◽  
Qinhua Lu ◽  
Xinyuan Hao ◽  
Mengxia Zheng ◽  
...  

Several Pestalotiopsis-like species cause gray blight disease in tea plants, resulting in severe tea production losses. However, systematic and comprehensive research on the diversity, geographical distribution, and pathogenicity of pathogenic species associated with tea plants in China is limited. In this study, 168 Pestalotiopsis-like isolates were obtained from diseased tea plant leaves from 13 primary tea-producing provinces and cities in China. Based on a multilocus (internal transcribed spacer, translation elongation factor 1-α, and β-tubulin gene region) phylogenetic analysis coupled with an assessment of conidial characteristics, 20 Neopestalotiopsis unclassified isolates, seven Pestalotiopsis species, including two novel (Pestalotiopsis menhaiensis and Pestalotiopsis sichuanensis), four known (Pestalotiopsis camelliae, Pestalotiopsis chamaeropis, Pestalotiopsis kenyana, and Pestalotiopsis rhodomyrtus) and one indistinguishable species, and three Pseudopestalotiopsis species, including two known (Pseudopestalotiopsis camelliae-sinensis and Pseudopestalotiopsis chinensis) and one indistinguishable species, were identified. This study is the first to evaluate Pestalotiopsis chamaeropis on tea plants in China. The geographical distribution and pathogenicity tests showed Pseudopestalotiopsis camelliae-sinensis to be the dominant cause of gray blight of tea plants in China. In vitro antifungal assays demonstrated that theobromine not only derepressed mycelial growth of the 29 representative isolates but also increased their growth. Correlation analysis revealed a linear positive relationship between the mycelial growth rate and pathogenicity (P = 0.0148).

Plant Disease ◽  
2018 ◽  
Vol 102 (1) ◽  
pp. 98-106 ◽  
Author(s):  
Yingjuan Chen ◽  
Liang Zeng ◽  
Na Shu ◽  
Maoyuan Jiang ◽  
Han Wang ◽  
...  

Gray blight of tea, caused by several Pestalotiopsis-like species, is one of the most destructive foliar diseases in tea cultivation yet the characteristics of these pathogens have not been confirmed until now. With morphological and multigene phylogenetic analyses, we have identified the gray blight fungi as Pseudopestalotiopsis camelliae-sinensis, Neopestalotiopsis clavispora, and Pestalotiopsis camelliae. Phylogenetic analyses derived from the combined internal transcribed spacer, β-tubulin, and translation elongation factor 1-α gene regions successfully resolved most of the Pestalotiopsis-like species used in this study with high bootstrap supports and revealed three major clusters representing these three species. Differences in colony appearance and conidia morphology (shape, size, septation, color and length of median cells, and length and number of apical and basal appendages) were consistent with the phylogenetic grouping. Pathogenicity tests validated that all three species isolated from tea leaves were causal agents of gray blight disease on tea plant (Camellia sinensis). This is the first description of the characteristics of the three species Pseudopestalotiopsis camelliae-sinensis, N. clavispora, and Pestalotiopsis camelliae as causal agents of tea gray blight disease in China.


Plant Disease ◽  
2015 ◽  
Vol 99 (3) ◽  
pp. 325-332 ◽  
Author(s):  
Zhenyue Lin ◽  
Jingjing Wei ◽  
Muqing Zhang ◽  
Shiqiang Xu ◽  
Qiang Guo ◽  
...  

Sugarcane twisted leaf disease, caused by Phoma sp., was first reported in Guangxi, China, in 2012, when more than 5% of sugarcane was infected in the field. Three single-spore isolates were recovered from symptomatic leaves. Sequences from five fungal loci, 28S nrDNA (LSU), 18S nrDNA (SSU), the internal transcribed spacer regions 1 and 2 and 5.8S nrDNA (ITS), β-tubulin (TUB), and the translation elongation factor alpha (TEF-α) were amplified from the disease-associated isolates. The twisted leaf disease pathogen was identified and formally described as Phoma sorghina var. saccharum through phylogenetic analyses, morphological observations, and the pathogenicity of the isolates on sugarcane. P. sorghina var. saccharum can be differentiated from related species based on the morphology of pycnidia and chlamydospores that formed regular, glabrous, papillate ostioles. Chlamydospore-anamorph was unicellular, botryoid-alternarioid shape, as well as the binucleate, frequently branched hyphae. We also showed that mycelial growth of P. sorghina var. saccharum was optimal at pH 4.0 and 20 to 25°C. Additionally, among 13 chemical compounds tested, carbendazim was found to be the most effective in suppressing the radial growth of the fungus. Mycelial growth in vitro was completely inhibited at concentrations of 100 and 50 ppm, and 87.6% of mycelial growth was inhibited at 10 ppm. Carbendazim is therefore a potentially effective fungicide to control this disease in China.


Plant Disease ◽  
2020 ◽  
pp. PDIS-05-20-1134
Author(s):  
Ichen Tsai ◽  
Chia-Lin Chung ◽  
Shiou-Ruei Lin ◽  
Ting-Hsuan Hung ◽  
Tang-Long Shen ◽  
...  

Camellia sinensis (L.) O. Kuntze, commonly known as tea, is widely cultivated around the world in tropical and subtropical areas. Tea is mainly manufactured using young shoots of tea plants. Therefore, it is essential to control foliar diseases. Gray blight disease is caused by pestalotiopsis-like taxa and is known as one of the most destructive tea diseases. Although several studies have provided the groundwork for the fungal diseases associated with C. sinensis in Taiwan, gray blight disease has not been characterized based on diversity, molecular systematics, or pathogenicity. The goal of this study was to identify and characterize the causative agents of tea gray blight disease. A total of 98 pestalotiopsis-like isolates associated with symptomatic leaves of C. sinensis from major tea fields in Taiwan were investigated. Based on phylogenies of single and concatenated DNA sequences (internal transcribed spacer, β-tubulin, translation elongation factor 1-α) together with morphology, we resolved most of the pestalotiopsis-like species in this study. The study revealed seven well-classified taxa and seven tentative clades in three genera: Pestalotiopsis, Pseudopestalotiopsis, and Neopestalotiopsis. One novel species, Pseudopestalotiopsis annellata, was introduced. Five new records, Pseudopestalotiopsis chinensis, Pseudopestalotiopsis camelliae-sinensis, Pestalotiopsis camelliae, Pestalotiopsis yanglingensis, and Pestalotiopsis trachicarpicola, were introduced for the first time in Taiwan. Pseudopestalotiopsis chinensis was the taxon most frequently isolated from C. sinensis in this study. Furthermore, results of pathogenicity assessments exhibited that, with wound inoculation, all assayed isolates in this study were pathogenic on tea leaves. Pseudopestalotiopsis chinensis and Pseudopestalotiopsis camelliae-sinensis were identified as the major pathogens associated with gray blight disease of tea in Taiwan. To our knowledge, this is the first study of the diversity, pathogenicity, and characterization of pestalotiopsis-like fungi causing tea gray blight disease in Taiwan.


Plant Disease ◽  
2019 ◽  
Vol 103 (11) ◽  
pp. 2786-2797 ◽  
Author(s):  
Shuangshuang Wang ◽  
Xiaozeng Mi ◽  
Zhiran Wu ◽  
Lixin Zhang ◽  
Chaoling Wei

Gray blight disease, caused by Pestalotiopsis-like fungi, is one of the deadliest threats to tea (Camellia sinensis) production. However, little information is known about the traits and characteristics of this pathogen. Here, a systematic survey was performed, and a total of 20 representative isolates were obtained from the leaves of tea plants affected by gray blight in two main tea plantations located in Anhui Province, China. Further analyses showed that two isolates were identified as Neopestalotiopsis ellipsospora, three isolates were regarded as Pseudopestalotiopsis chinensis, one isolate was considered as Pseudopestalotiopsis camelliae-sinensis, and the remaining isolates belonged to Pseudopestalotiopsis spp., on the basis of morphological characteristics and multigene phylogenetic analyses of the internal transcribed spacer, β-tubulin, and translation elongation factor 1-α. Pathogenicity tests indicated that there were significant differences in virulence among the Neopestalotiopsis and Pseudopestalotiopsis isolates when inoculated on the leaves of the tea plant (C. sinensis ‘Shuchazao’). Furthermore, varied pathogenicity was also observed for the same isolate when inoculated on different varieties of tea plants. To our knowledge, this is the first record of Neopestalotiopsis ellipsospora and Pseudopestalotiopsis chinensis causing gray blight disease of tea plants in China.


Plant Disease ◽  
2017 ◽  
Vol 101 (10) ◽  
pp. 1802-1811 ◽  
Author(s):  
Z. H. Wang ◽  
Z. X. Zhao ◽  
N. Hong ◽  
Dejiang Ni ◽  
L. Cai ◽  
...  

A novel disease characterized by small brown-black spots (1 to 2 mm in diameter) on tender tea leaves (Camellia sinensis) has been observed in many regions of Hubei Province, China, which severely affects the yield and quality of tea. Tea leaf samples with typical symptoms were collected from three major tea-cultivation regions of Hubei, and were subjected to pathogen isolation for etiological analysis. As a result, 34 Pestalotiopsis isolates were obtained from 20 samples, and they were identified as Pestalotiopsis theae (14 isolates), P. camelliae (12), and P. clavispora (8), determined by morphologies and phylogenetic analysis based on internal transcribed spacer, and partial β-tubulin and translation elongation factor 1-alpha genes. Pathogenicity tests on detached tea leaves showed that no matter what mycelial discs or conidium suspensions were used, inoculation of the Pestalotiopsis fungi could result in small brown-black spots (1 to 2 mm in diameter) on wounded leaves, similar to those observed in the field in the sizes and colors. It also revealed that only P. theae had pathogenicity on unwounded tea leaves, and P. theae and P. clavispora showed significantly higher virulence than P. camelliae. Inoculation test with conidium suspension on intact tea leaves in the field further confirmed that P. theae as the pathogen of brown-black spots. Reisolation of the pathogens from diseased leaves confirmed that the symptom was caused by the inoculation of Pestalotiopsis fungi. The P. theae isolates responsible for brown-black spots were also compared with those for tea gray blight disease in growth rate, pathogenicity, and molecular characteristics in parallel. To our knowledge, this is the first report that the Pestalotiopsis fungi cause brown-black spot disease on tender tea leaves. The results provide important implications for the prevention and management of this economically important disease.


2021 ◽  
Vol 7 (3) ◽  
pp. 172
Author(s):  
Francesco Aloi ◽  
Mario Riolo ◽  
Simona Marianna Sanzani ◽  
Annamaria Mincuzzi ◽  
Antonio Ippolito ◽  
...  

This study was aimed at identifying Alternaria species associated with heart rot disease of pomegranate fruit in southern Italy and characterizing their mycotoxigenic profile. A total of 42 Alternaria isolates were characterized. They were obtained from pomegranate fruits with symptoms of heart rot sampled in Apulia and Sicily and grouped into six distinct morphotypes based on macro- and microscopic features. According to multigene phylogenetic analysis, including internal transcribed spacer (ITS), translation elongation factor 1-α (EF-1α), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a SCAR marker (OPA10-2), 38 isolates of morphotypes 1 to 5 were identified as Alternaria alternata, while isolates of morphotype 6, all from Sicily, clustered within the Alternaria arborescens species complex. In particular, isolates of morphotype 1, the most numerous, clustered with the ex-type isolate of A. alternata, proving to belong to A. alternata. No difference in pathogenicity on pomegranate fruits was found between isolates of A. alternata and A. arborescens and among A. alternata isolates of different morphotypes. The toxigenic profile of isolates varied greatly: in vitro, all 42 isolates produced tenuazonic acid and most of them other mycotoxins, including alternariol, alternariol monomethyl ether, altenuene and tentoxin.


2012 ◽  
Vol 48 (No. 2) ◽  
pp. 74-79 ◽  
Author(s):  
S.M.A. Nashwa ◽  
K.A.M. Abo-Elyousr

The antimicrobial activity of six plant extracts from Ocimum basilicum (Sweat Basil), Azadirachta indica (Neem), Eucalyptus chamadulonsis (Eucalyptus), Datura stramonium (Jimsonweed), Nerium oleander (Oleander), and Allium sativum (Garlic) was tested for controlling Alternaria solani in vitro and in vivo. In in vitro study the leaf extracts of D. stramonium, A. indica, and A. sativum at 5% concentration caused the highest reduction of mycelial growth of A. solani (44.4, 43.3 and 42.2%, respectively), while O. basilicum at 1% and 5% concentration and N. oleander at 5% concentration caused the lowest inhibition of mycelial growth of the pathogen. In greenhouse experiments the highest reduction of disease severity was achieved by the extracts of A. sativum at 5% concentration and D. stramonium at 1% and 5% concentration. The greatest reduction of disease severity was achieved by A. sativum at 5% concentration and the smallest reduction was obtained when tomato plants were treated with O. basilicum at 1% and 5% concentration (46.1 and 45.2 %, respectively). D. stramonium and A. sativum at 5% concentration increased the fruit yield by 76.2% and 66.7% compared to the infected control. All treatments with plant extracts significantly reduced the early blight disease as well as increased the yield of tomato compared to the infected control under field conditions.


Phytotaxa ◽  
2020 ◽  
Vol 440 (2) ◽  
pp. 89-100
Author(s):  
NABAHAT BESSADAT ◽  
BRUNO HAMON ◽  
NELLY BATAILLE-SIMONEAU ◽  
KIHAL MABROUK ◽  
PHILIPPE SIMONEAU

During a biodiversity survey of Alternaria associated with leaf spot and blight of Solanaceae, a large collection of strains was obtained from samples collected in north-western regions of Algeria in 2013–2018 growing seasons. Amongst these strains, three isolates recovered from tomato and potato had morphological traits different from that usually observed for Alternaria species previously reported on Solanaceae. Based on analysis of a sequence dataset corresponding to portions of the glyceraldehyde-3-phosphate dehydrogenase (gpd), translation elongation factor 1-alpha (tef1) and RNA polymerase second largest subunit (rpb2) genes along with morphological observations, isolates were identified as a new species in the section Japonicae. This novel species, described here as Alternaria telliensis, is phylogenetically and morphologically distinct from A. japonica and A. nepalensis in this section. Pathogenicity tests were performed and isolates were found to be weakly pathogenic to tomato and potato (Solanaceae) while highly aggressive on radish, cabbage and turnip (Brassicaceae) plants.


Diversity ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 218 ◽  
Author(s):  
Jessica Sánchez ◽  
Paola Iturralde ◽  
Alma Koch ◽  
Cristina Tello ◽  
Dennis Martinez ◽  
...  

Andean blackberry (Rubus glaucus Benth) plants from the provinces of Tungurahua and Bolivar (Ecuador) started showing symptoms of black foot disease since 2010. Wilted plants were sampled in both provinces from 2014 to 2017, and fungal isolates were obtained from tissues surrounding necrotic lesions in the cortex of the roots and crown. Based on morphological characteristics and DNA sequencing of histone 3 and the translation elongation factor 1α gene, isolates were identified as one of seven species, Ilyonectria vredehoekensis, Ilyonectria robusta, Ilyonectria venezuelensis, Ilyonectria europaea, Dactylonectria torresensis, or Dactylonectria novozelandica. Pathogenicity tests with isolates from each species, excluding I. europaea and D. novozelandica whose isolates were lost due to contamination, confirmed that the four species tested can produce black foot disease symptoms in Andean blackberry. This is the first report of Dactylonectria and Ilyonectria species causing black foot disease of Andean blackberry.


Plant Disease ◽  
2015 ◽  
Vol 99 (12) ◽  
pp. 1678-1688 ◽  
Author(s):  
Antonia Carlucci ◽  
Francesca Cibelli ◽  
Francesco Lops ◽  
Maria Luisa Raimondo

Botryosphaeriaceae spp. have a cosmopolitan distribution and a wide range of plant hosts. Over the last 15 years, worldwide, 21 species of this family have been associated with grapevine trunk diseases that cause cankers and dieback on grapevines. Here, we surveyed vineyards of Vitis vinifera ‘Lambrusco’, ‘Sangiovese’, and ‘Montepulciano’ in three areas of the Foggia province (Cerignola, Foggia, and San Severo) in southern Italy. Wood samples from grapevines showing general decline, dieback, cankers, and wood and foliar discoloration yielded 344 fungal isolates identified as Botryosphaeriaceae spp. A phylogenetic study combining internal transcribed spacer and translation elongation factor 1-α sequences of 60 representative isolates identified nine botryosphaeriaceous species: Botryosphaeria dothidea, Diplodia corticola, D. mutila, D. seriata, Dothiorella iberica, Do. sarmentorum, Lasiodiplodia citricola, L. theobromae, and Neofusicoccum parvum. Pathogenicity tests confirmed that all nine species cause canker and dieback of grapevines. However, this is the first report of L. citricola as causal agent of wood cankers and dieback of grapevine. To date, including L. citricola, there are 25 botryosphaeriaceous species associated with V. vinifera worldwide, of which 12 have been reported for grapevines in Italy.


Sign in / Sign up

Export Citation Format

Share Document