scholarly journals First Report of Leaf Spot Caused by Didymella americana on Cassia nomame in China

Plant Disease ◽  
2021 ◽  
Author(s):  
Weiming Sun ◽  
Lina Feng ◽  
Xiaolei Wen ◽  
Bojia Han ◽  
Danrun Xing ◽  
...  

Cassia nomame (Sieb.) Kitagawa is an annual plant in the Leguminousae family. The aerial parts of C. nomame have been used as tonic and diuretic in Korea and Japan (Syed et al. 2019). A leaf spot was observed on the leaves of a 1-year-old C. nomame landrace in Changli County (39.42°N, 119.10°E), Qinhuangdao City, Hebei Province during August to October in 2018. In many fields (n≥3), the disease incidence over 80% in the middle and late stage of plant growth. Symptoms on leaves in one field began with many small, dark necrotic spot lesions. Later, the lesions spread to round-to-oval, slightly sunken in the center, and large necrotic patches with indefinite margins. Finally, lesions coalesced and resulted in defoliation. Lesions were occasionally observed on the pods. Symptoms on the pods were initially small, dark spots and then expanded to large necrotic patches with irregular edges. Symptomatic tissues (n=32) from pods and leaves were cut into 3 to 8 mm2 squares, surface disinfested with 75% ethanol for 10 s, rinsed with sterile distilled water, then placed on potato dextrose agar (PDA) at 28℃. After 3 days, ten isolates with consistent characteristics were obtained with a frequency 52.6%. The isolates on PDA were round, initially pale and had little aerial mycelium, gradually turned olive green and had dense wool-like dense aerial mycelia after 3 days. Conidia were hyaline, smooth, solitary, and elliptical. The conidia measured 5.4 to 8.2 μm × 2.5 to 3.8 μm (n=50), and has two oil bodies positioning at opposite poles. Pigmented chlamydospores were spherical or nearly pear-shaped, and solitary. Black fructifications (pycnidia) were produced profusely on PDA after subculture for 3 days. All the isolates were similar to Didymella sp. in morphology (Aveskamp et al. 2009). Choice three isolates YSGUO8 YSGGUO8-a and YSGGUO8-b to be further characterized by sequencing of the internal transcribed spacer (ITS), actin gene, and 28S large subunit of the nuclear rRNA gene (LSU) (Zhang et al. 2017). The sequences of three strains (MK836417 MZ484072 and MZ484073 for ITS, MK837604 MZ593675 and MZ593676 for actin, MK843781 MZ836208 and MZ836207 for LSU, respectively) showed 99% to 100% similarity with Didymella americana K-004 (KY070279 for ITS,KY070285 for LSU), Phoma americana CBS 256.65 (FJ426973 for ITS, FJ426871 for actin, MH870196 for LSU) and P. americana CBS 185.85 (FJ426972 for ITS, FJ426870 for actin, GU237990 for LSU) in GenBank. The fungi were identified as D. americana (formerly P. americana or Peyronellaea americana) on the basis of morphological characteristics and sequence analysis. A pathogenicity test was conducted with three times on 1-year-old C. nomame strain at the 4 to 6 compound leaf stage. Conidia were obtained from 7-day-old PDA cultures grown at 28℃ with a 12-h photoperiod. Koch’s postulates were fulfilled by spray inoculating ten healthy young plants with 106 conidia per milliliter of D. americana strain YSGUO8, and sterile water as the control. After inoculation, the plants were managed at 28℃, 60% relative humidity and a 12-h photoperiod. After 5 to 8 days, the inoculated leaves developed small and dark spots lesions similar to those observed on the leaves with initial symptoms in the field. The control leaves remained symptomless. The same fungi were re-isolated from infected leaves by morphology observation and sequence analysis, confirming Koch's postulates. D. americana has caused leaves spot on Table Beet in New York (Vaghefi et al. 2016). To our knowledge, this is the first report of D. americana causing leaf spot of C. nomame in China.

Plant Disease ◽  
2021 ◽  
Author(s):  
Dayu Lan ◽  
Fangling Shu ◽  
Yanhui Lu ◽  
Anfa Shou ◽  
Wei Lin ◽  
...  

Tobacco (Nicotiana tabacum L.), one of the chief commercial crops, is wildly cultivated worldwide. In June 2020 and 2021, an unknown bacterial leaf spot on tobacco was found in Hezhou and Hechi City, Guangxi, China. 30% of the tobacco were affected and the rate of diseased leaves reached about 10% in the field under high temperature and rainstorm. The disease mainly damaged the middle and top leaves of tobacco plants at vigorous growing stage. The initial symptoms were water-soaked spots on the frontal half of a leaf, and then expanded into circular to irregular spots with a yellow halo at the edge. The spots mostly appeared dark brown at high air humidity, while yellow brown at low humidity and exhibited a concentric pattern. In severe cases, the lesions coalesced and the whole leaf was densely covered with lesions, resulting in the loss of baking value. A bacterium was consistently isolated from diseased leaf tissues on nutrient agar (NA). Growth on NA was predominantly grayish white circular bacterial colonies with smooth margins, and the bacterium is rod-shaped, gram-negative and fluorescent on King’s B medium. Seven isolates (ND04A-ND04C and ZSXF02-ZSXF05) were selected for molecular identification and pathogenicity tests. Genomic DNA of the bacterium was extracted and the housekeeping gene of cts (encoding citrate synthase) was amplified with the primers cts-Fs/cts-Rs (forward primer cts-Fs: 5’-CCCGTCGAGCTGCCAATWCTGA-3’; reverse primer cts-Rs: 5’-ATCTCGCACGGSGTRTTGAACATC-3’) (Berge et al. 2014; Sarkar et al. 2004). 409-bp cts gene sequences were deposited in the GenBank database for seven isolates (accession no. OK105110-OK105116). Sequence of seven isolates shared 100% identity with several Pseudomonas cichorii strains within the GenBank database (accession no. KY940268 and KY940271), and the phylogenetic tree of cts genes of the seven isolates clustered with the phylogroup 11 of Pseudomonas syringae (accession no. KJ877799 and KJ878111), which was classified as P.cichorii. To satisfy Koch’s postulates, a pathogenicity test was tested by using a needle to dip a suspension of the bacterium (108 CFU/ml) and pricking three holes in the tobacco leaf. The control plants leaves were needled with sterile water. Each tobacco plant was inoculated with three leaves, and the test was repeated three times. All plants were placed in transparent plastic boxes and incubated in a greenhouse at 25 ± 3°C. The water-soaked spots appeared 24h after inoculation and quickly expanded through leaf veins. Three days after inoculation, all the inoculated leaves showed symptoms similar to those observed in the field. Control plants remained healthy. Only P. cichorii was successfully re-isolated from the lesions, confirming Koch’s postulates. Pseudomonas cichorii can infect eggplant, lettuce, tomatoand other crops, and has a wide range of hosts (Timilsina et al. 2017; Ullah et al. 2015). To our knowledge, this is the first report of P. cichorii causing leaf spot on tobacco in China.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yang Zhang ◽  
Guangqiang Li ◽  
Dou Yang ◽  
Ruoling Zhang ◽  
Songze Wan

Mu oil tree (Vernicia montana) is an economically important woody oil plant, which is widely distributed in southern China. In mid-May 2020, a leaf spot disease was observed on the leaves of mu oil tree in Taihe County in Jiangxi Province, China (26°55′25.55″N, 114°49′5.85″E). The disease incidence was estimated to be above 40%. Initial symptoms were circular red-brown spots which were 1-2 mm in diameter, then enlarged with red-brown center. In later stages, the spots coalesced and formed large patches, and subsequently red-brown centers of lesions gradually dried and fell out, forming a “shot hole” appearance. To identify the pathogen, diseased leaves were collected from Taihe County. Leaf tissues (5 × 5 mm) were cut from the margins of typical symptomatic lesions, surface- sterilized in 75% ethanol for 30 seconds and 3% sodium hypochlorite for 60 seconds, then rinsed with sterile distilled water three times. Leaf pieces were placed on potato dextrose agar (PDA; 1.5%, Difco-BD Diagnostics) and incubated at 25 °C in the dark. Pure cultures were obtained from individual conidia by recovering single spores. On PDA, colonies were initially white and cottony. The mycelia then became pinkish to deep-pink with time at the center on the front side and pink on the reverse side. Colonies produced pale orange conidial masses after 9 days. Conidia were fusiform with acute ends, smooth-walled, hyaline, and measured 3.6–5.5 × 8.1–14.5 µm (4.5 ± 0.5 × 10.6 ± 1.0 µm, n = 100). The morphological characteristics of the isolate matched the descriptions of Colletotrichum acutatum complex (Damm et al. 2012). For molecular identification, the internal transcribed spacer (ITS) region, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), chitin synthase (CHS-1), beta-tubulin 2 (TUB2), and actin (ACT) were sequenced using the primers ITS1/ITS4, GDF/GDR, CHS-79F/CHS-345R, T1/Bt2b, ACT-512F/ACT-783R, respectively (Weir et al. 2012). The obtained sequences were deposited into the GenBank [accession nos. MW584317 (ITS); MW656269 (GAPDH); MW656270 (TUB2); MW656268 (CHS-1); MW656267 (ACT)]. All the sequences showed 94 to 100% similarity with those of C. fioriniae. A neighbor-joining phylogenetic tree was generated by combining all the sequenced loci using MEGA7.0 (Kumar et al. 2016). The isolate TH-M4 clustered with C. fioriniae, having 99% bootstrap support. Base on the morphology and multi-gene phylogeny, isolate TH-M4 was identified as C. fioriniae (Damm et al. 2012). To confirm pathogenicity, 20 healthy leaves of 10 mu oil trees (3-year-old) grown outdoors were inoculated with a drop of spore suspension (106 conidia per mL) of the isolate TH-M4 in September 2020. Another 10 plants were inoculated with sterile water as the control. The leaves were wounded with a sterile toothpick. All the inoculated leaves were covered with black plastic bags to maintain humidity for 2 days. The pathogenicity test was repeated twice. The resulting symptoms were similar to those on the original infected plants, whereas the control leaves remained asymptomatic. The same fungus was re-isolated from the lesions on the inoculated plant, fulfilling Koch’s postulates. C. fioriniae has been recorded as anthracnose pathogen on Mahonia aquifolium (Garibaldi et al. 2020), Paeonia lactiflora (Park et al. 2020), Solanum melongena (Xu et al. 2020), and Juglans regia (Varjas et al. 2020). To our knowledge, this is the first report of C. fioriniae associated with leaf spot disease on mu oil tree in China. This study provided crucial information for epidemiologic studies and appropriate control strategies for this oil plant disease.


Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 289-289 ◽  
Author(s):  
Y. Z. Zhu ◽  
W. J. Liao ◽  
D. X. Zou ◽  
Y. J. Wu ◽  
Y. Zhou

In May 2014, a severe leaf spot disease was observed on walnut tree (Juglans regia L.) in Hechi, Guangxi, China. Leaf spots were circular to semicircular in shape, water-soaked, later becoming grayish white in the center with a dark brown margin and bordered by a tan halo. Necrotic lesions were approximately 3 to 4 mm in diameter. Diseased leaves were collected from 10 trees in each of five commercial orchards. The diseased leaves were cut into 5 × 5 mm slices, dipped in 75% ethanol for 30 s, washed three times in sterilized water, sterilized with 0.1% (w/v) HgCl2 for 3 min, and then rinsed five times with sterile distilled water. These slices were placed on potato dextrose agar (PDA), followed by incubating at 28°C for about 3 to 4 days. Fungal isolates were obtained from these diseased tissues, transferred onto PDA plates, and incubated at 28°C. These isolates produced gray aerial mycelium and then became pinkish gray with age. Moreover, the reverse of the colony was pink. The growth rate was 8.21 to 8.41 mm per day (average = 8.29 ± 0.11, n = 3) at 28°C. The colonies produced pale orange conidial masses and were fusiform with acute ends, hyaline, sometimes guttulate, 4.02 to 5.25 × 13.71 to 15.72 μm (average = 4.56 ± 0.31 × 14.87 ± 1.14 μm, n = 25). The morphological characteristics and measurements of this fungal isolate matched the previous descriptions of Colletotrichum fioriniae (Marcelino & Gouli) R.G. Shivas & Y.P. Tan (2). Meanwhile, these characterizations were further confirmed by analysis of the partial sequence of five genes: the internal transcribed spacer (ITS) of the ribosomal DNA, beta-tubulin (β-tub) gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene, chitin synthase 3(CHS-1) gene, and actin (ACT) gene, with universal primers ITS4/ITS5, T1/βt2b, GDF1/GDR1, CHS1-79F/CHS1-354R, and ACT-512F/ACT-783R, respectively (1). BLAST of these DNA sequences using the nucleotide database of GenBank showed a high identify (ITS, 99%; β-tub, 99%; GAPDH, 99%; CHS-1, 99%; and ACT, 100%) with the previously deposited sequences of C. fioriniae (ITS, KF278459.1, NR111747.1; β-tub, AB744079.1, AB690809.1; GAPDH, KF944355.1, KF944354.1; CHS-1, JQ948987.1, JQ949005.1; and ACT, JQ949625.1, JQ949626.1). Koch's postulates were fulfilled by inoculating six healthy 1-year-old walnut trees in July 2014 with maximum and minimum temperatures of 33 and 26°C. The 6-mm mycelial plug, which was cut from the margin of a 5-day-old colony of the fungus on PDA, was placed onto each pin-wounded leaf, ensuring good contact between the mycelium and the wound. Non-colonized PDA plugs were placed onto pin-wounds as negative controls. Following inoculation, both inoculated and control plants were covered with plastic bags. Leaf spots, similar to those on naturally infected plants, were observed on the leaves inoculated with C. fioriniae within 5 days. No symptoms were observed on the negative control leaves. Finally, C. fioriniae was re-isolated from symptomatic leaves; in contrast, no fungus was isolated from the control, which confirmed Koch's postulates. To our knowledge, this is the first report of leaf disease on walnut caused by C. fioriniae. References: (1) L. Cai et al. Fungal Divers. 39:183, 2009. (2) R. G. Shivas and Y. P. Tan. Fungal Divers. 39:111, 2009.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 997-997 ◽  
Author(s):  
P. Sooväli ◽  
M. Tikhonova ◽  
P. Matušinsky

Ramularia leaf spot (RLS) is a disease of barley (Hordeum vulgare) caused by the fungus Ramularia collo-cygni Sutton & Waller (Rcc). Rcc causes necrotic lesions, premature senescence of leaves, and yield reduction. Under Estonian conditions, there are usually no leaf spots on the upper leaves of barley prior to flowering. In 2009, 2010, and 2012, symptoms similar to those of RLS were observed on leaves of spring and winter barley in several Estonian agricultural regions. Approximately 30% of the plants in affected fields were symptomatic. Symptoms were not observed in 2011, which was a dry and hot year. Initial symptoms were small brown spots, beginning on the upper leaves (flag leaf, F-1 leaf) at the flowering growth stage (4). Later, the spots spread to the sheaths, stems, and awns and became necrotic. The lateral margins of the spots were delimited by the leaf veins and spots are surrounded by a chlorotic halo. During summer 2012, two samples of 15 F-1 leaves were collected from spring barley cv. Maali and line SJ111609 from the Estonian Crop Research Institute in eastern Estonia in late July at growth stage 71 (4). In addition, six grain samples, containing 200 seeds each of the cv. Maali, were collected from different agricultural regions in Estonia, along with one grain sample of SJ111609 from Jõgeva. All samples were collected from untreated plots and leaves were observed under a dissecting microscope, revealing white clusters of conidiophores in rows on the undersides of the leaves. Conidia and conidiophores were scraped aseptically from the leaf surface using a sterile needle under a dissecting microscope and transferred to potato dextrose agar (PDA) containing ampicillin sodium salt (50 mg l−1). Plates were incubated at 18°C in the dark for 20 days until fungal mycelia were produced. The fungus was initially identified as Rcc on the basis of morphological characteristics (3). Colorless, 0- to 3-septate conidiophores were 15 to 17 × 2 to 5 μm, with a strongly curved end. Conidia were 7 to 11 × 3 to 6 μm, solitary, subglobose, single-celled, and of a darkish color. To confirm the presence of Rcc, DNA was extracted from the original barley leaf material, milled seeds, and positive control mycelia of Rcc grown on PDA using DNeasy Plant Mini Kit (Qiagen Gmbh, D-40724 Hilden, Germany) following manufacturer's guides. Rcc specific primers RC3 and RC5 (1) were used. A positive control consisting of 1 ng of purified Rcc DNA was included in the PCR. Standard PCR was conducted in a SEE AMP Seegene cycler. PCR were carried out in 20 μl volumes, containing 2 μl of DNA, 10 μl PCR mix, 0.4 μl each of forward and reverse Rcc primers, and 7.2 μl H2O. Qualitative detection analyzed by standard PCR with primers RC3 and RC5 revealed the presence of Rcc in symptomatic leaves and seeds. To complete Koch's postulates, a pathogenicity test was performed. Twenty-five barley seedlings were grown under controlled conditions (15°C/48 h dark, 16 h light/8 h dark, 70% RH) and spray-inoculated with a suspension of Rcc mycelium fragments as described by Macepeace et al. (2). The pathogen was re-isolated from leaves with necrotic lesions similar to those observed in the field, thus fulfilling Koch's postulates. To our knowledge, this is the first confirmed report of Ramularia leaf spot caused by Ramularia collo-cygni on barley in Estonia. References: (1) P. Frei et al. J. Phytopathol. 155:281, 2007. (2) J. C. Makepeace et al. Plant Pathol. 57:991, 2008. (3) B. C. Sutton and J. M. Waller. Trans. Brit. Mycol. Soc. 90:55, 1988. (4) J. C. Zadoks et al. Weed Res. 14:415, 1974.


Plant Disease ◽  
2020 ◽  
Author(s):  
Min Li ◽  
Meijiao Hu ◽  
Zhaoyin Gao ◽  
Xiaoyu Hong ◽  
Chao Zhao ◽  
...  

Ipomoea pes-caprae plays an important role in protecting the tropical and subtropical coastal beach of the world. In 2018, a leaf spot was observed on I. pes-caprae in Xisha islands of China, 13.2–25.8% of leaves were infected. The initial symptoms were small (1–3 mm diameter), single, circular, dark gray spots with a light-yellow center on the leaves. The lesions enlarged and were scattered or confluent, distinct and circular, subcircular or irregular, occasionally vein-limited, pale to dark gray-brown, with a narrow dark brown border surrounded by a diffuse yellow margin. Microscopic observations of the spots revealed that caespituli were dark brown and amphigenous, but abundant on the underside of the leaves. Mycelia were internal. Conidiophores were fasciculate, occasionally solitary, pale olivaceous-brown throughout, 0- to 3-septate, 27.9–115.8 (63.4±22.5) µm × 3.2–5.3 (4.3±0.87) µm (n=100). Conidial scars were conspicuously thickened. Conidia were solitary, hyaline, filiform, acicular to obclavate, straight to slightly curved, subacute to obtuse at the apex, truncate at the base, multi-septate, 21.0–125.5 (60.2±20.1) µm × 2.0–5.0 (3.8±0.83) µm (n=100). Single-conidium isolates were obtained from representative colonies grown on potato dextrose agar (PDA) incubated at 25℃ in the dark. The colonies grew slowly and were dense, white to gray and flat with aerial mycelium. Mycelia were initially white, and then became gray. Conidia were borne on the conidiophores directly. The pure isolate HTW-1 was selected for molecular identification and pathogenicity test, which were deposited in Microbiological Culture Collection Center of Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences. The internal transcribed spacer (ITS) region of rDNA, translation elongation factor 1-alpha (tef1) and histone H3 (his3) genes were amplified with ITS1/ITS4, EF-1 / EF-2, and CYLH3F / CYLH3R primers, respectively (Groenewald et al. 2013). The obtained sequences of HTW-1 were all deposited in GenBank with accession numbers MT410467 for ITS, MT418903 for tef1 and MT418904 for his3. The ITS, tef1 and his3 genes all showed 100% similarity for ITS (JX143582), tef1 (JX143340) and his3 (JX142602) with C. cf. citrulina (MUCC 588; MAFF 239409) from I. pes-caprae in Japan. Based on the morphological characteristics and molecular identification, the pathogen was identified as Cercospora cf. citrulina (Groenewald et al. 2013). The pathogenicity test was conducted by spraying conidial suspension (1×104 conidia/mL) on wounded and unwounded leaves for seedling of I. pes-caprae in greenhouse and in sterile vitro condition. The conidial suspension was prepared using conidia from 30-day-old culture grown on PDA at 25℃ in the dark. Leaf surfaces of seedling in greenhouse were wounded by lightly rubbing with a steel sponge and detached leaf surfaces were wounded by sterile needles. the treatments were sprayed with conidial suspensions on wounded and unwounded leaf surfaces. The control was sprayed with sterile water. After eight days, the typical symptoms of spots which were small, single, circular and dark gray appeared on the inoculated wounded leaves, while the inoculated unwounded leaves and the control leaves were symptomless. The pathogen was only re-isolated from the inoculated wounded leaves. The pathogen may be infected by wound. A total of 20 Cercospora and related species was found on Ipomoea spp. (García et al. 1996). Cercospora cf. citrulina has been reported on I. pes-caprae in Japan, although it was unclear if it was a pathogen or saprophyte (Groenewald et al. 2013). To our knowledge, this is the first report of C. cf. citrulina causing leaf spot of I. pes-caprae in China. This disease could threat the cultivation of I. pes-caprae in China.


Plant Disease ◽  
2015 ◽  
Vol 99 (3) ◽  
pp. 416-416 ◽  
Author(s):  
T. Popović ◽  
Ž. Ivanović ◽  
M. Ignjatov ◽  
D. Milošević

During the spring of 2014, a severe leaf spot disease was observed on carrot (Daucus carota), parsley (Petroselinum crispum), and parsnip (Pastinaca sativa) on a 0.5-ha vegetable farm in Vojvodina Province, Serbia. The disease appeared under wet and cool conditions with 5 to 25% of plants infected for each of the three crops. Symptoms were characterized as brown angular leaf spots, ~2 mm in diameter, often limited by veins. Collected symptomatic leaves were rinsed and dried at room temperature, and leaf sections taken from the margin of necrotic tissue were macerated in sterile phosphate buffer and streaked onto nutrient agar with 5% (w/v) sucrose (NAS). After isolation, whitish, circular, dome-shaped, Levan-positive colonies consistently formed. Five strains from each host (carrot, parsley, and parsnip) were used for further study. Strains were gram-negative, aerobic, and positive for catalase and tobacco hypersensitive reaction but negative for oxidase, rot of potato slices, and arginine dihydrolase. These reactions corresponded to LOPAT group Ia, which includes Pseudomonas syringae pathovars (3). Repetitive extragenic palindromic sequence (Rep)-PCR fingerprint profiles using the REP, ERIC, and BOX primers (4) were identical for all strains. Sequence typing of the housekeeping genes gyrB and rpoD (1) was performed for three representative strains (one from each host). Sequences were deposited in the NCBI GenBank database as accessions KM979434 to KM979436 (strains from carrot, parsnip, and parsley, respectively) for the gyrB gene and KM979437 to KM979439 (strains from parsnip, parsley and carrot, respectively) for the rpoD gene. Sequences were compared with pathotype strain Pseudomonas syringae pv. coriandricola ICMP12471 deposited in the Plant Associated and Environmental Microbes Database ( http://genome.ppws.vt.edu/cgi-bin/MLST/home.pl ). BLAST analysis revealed 100% homology for gyrB and 99% homology for rpoD. Pathogenicity was tested with five representative strains from each host on four-week-old plants of carrot (cv. Nantes), parsley (cv. NS Molski), and parsnip (cv. Dugi beli glatki) using two methods: spraying the bacterial suspension (108 CFU ml−1) on the leaves until runoff (5) and injecting the bacterial suspension into leaves with a hypodermic syringe (2). Four plants were used per strain and method. Sterile distilled water was applied as a negative control treatment for each plant species. All plants were kept in a mist room with 100% humidity for 4 h, then transferred to a greenhouse at 25°C and 80% relative humidity and examined for symptom development over a period of three weeks. For all strains, inoculated leaves first developed water-soaked lesions on the leaves 5 to 7 days after inoculation (DAI); 14 DAI lesions became dark brown, often surrounded by haloes. No symptoms were observed on control plants inoculated with sterile distilled water. For fulfillment of Koch's postulates, re-isolations were done onto NAS. Re-isolated bacteria were obtained from each inoculated host and confirmed to be identical to the original isolates using the LOPAT tests and Rep-PCR fingerprinting profiles. Based on the pathogenicity test accompanied by completion of Koch's postulates, sequence analysis, and bacteriological tests, the strains were identified as P. s. pv. coriandricola. To our knowledge, this is the first report of bacterial leaf spot of carrot, parsley, and parsnip in Serbia. It may present a threat to production due to quality requirements for fresh market. References: (1) P. Ferrente and M. Scortichini. Plant Pathol. 59:954, 2010. (2) M. Gupta et al. Plant Dis. 97:418, 2013. (3) R. A. Lelliott et al. J. Appl. Bacteriol. 29:470, 1966. (4) F. J. Louws et al. Appl. Environ. Microb. 60:2286, 1994. (5) X. Xu and S. A. Miller. Plant Dis. 97:988, 2013.


Plant Disease ◽  
2010 ◽  
Vol 94 (2) ◽  
pp. 280-280
Author(s):  
Y. P. Zhang ◽  
J. H. Wang ◽  
L. F. Wu ◽  
X. W. Wu ◽  
G. F. Cui ◽  
...  

Lily is an economically important ornamental crop in Korea. In August 2008, severe leaf spot symptoms were observed on an oriental Lily ‘Action’ in a plant nursery in Daegu, Korea. Disease incidence was 20 to 30%. Initial symptoms were olive green-to-brown lesions on the leaf that developed into tan, elliptical, necrotic lesions. On severely infected leaves, lesions coalesced and killed the entire leaf blade. Infected leaves were surface disinfested with 70% ethanol for 30 s and 2% chlorox for 15 min before plating 1 cm2 sections onto potato dextrose agar. Hyphae appeared 5 days after inoculation and pure culture. Conidia were hyaline, transversely septate with one to three septa; most had two. Conidia were obpyriform and measured 29 to 46 μm long and 7 to 17 μm wide. Mycelia morphology and conidia production were consistent with that described previously for Pyricularia grisea (1). Koch's postulates were fulfilled by spraying five, healthy, vegetative-stage plants with 2 × 105 conidia per ml of sterile distilled water plus 0.05% Tween 20. As a control, five similar plants were sprayed with sterile water plus 0.05% Tween 20 only. Plants were placed inside plastic bags to maintain high relative humidity and incubated in a growth chamber at 25°C under fluorescent light for 14 h and at 20°C in darkness for 10 h. After 3 days, the plastic bags were removed and plants were maintained under the same conditions. Initial symptoms were observed 7 days after inoculation. Ten days after inoculation, disease symptoms on inoculated plants were similar to those previously described in the nursery. Control plants did not show any symptoms. Fungi isolated from these lesions had the same morphological characteristics as the ones isolated previously from plants in the nursery. To our knowledge, this is the first report of gray leaf spot on lily caused by P. grisea in Korea. References: (1) M. B. Ellis. Dematiaceous Hyphomycetes. CMI, Kew, Surrey, UK, 1971.


Plant Disease ◽  
2014 ◽  
Vol 98 (4) ◽  
pp. 566-566 ◽  
Author(s):  
C. Zheng ◽  
Z.-H. Liu ◽  
S.-S. Tang ◽  
D. Lu ◽  
X.-Y. Huang

Eggplant (Solanum melongena L.) is an important vegetable crop that has significant economic value in northern regions of China, especially in Liaoning Province. In April 2013, a leaf spot was discovered on the eggplant cultivar 706 in ten 1-ha commercial greenhouses in Huludao, Liaoning Province, with 30% of the eggplants infected, resulting in reduced eggplant yield and quality. By July 2013, disease incidence was 35%. Spots were found mainly on the leaves. At the early stage of infection, small, chlorotic spots appeared on leaves and gradually expanded into brown, irregular spots with a diameter of 1 to 7 mm. Dark green mold developed in the spots on both sides of the leaves at high humidity, and the spots led to leaf yellowing and defoliation. Conidiophores in the lesions were straight or slightly flexuous with 1 to 7 septa, brown and smooth, with typical swellings at the junction of septa, and 45 to 670 × 3.0 to 5.3 μm. Conidia were oval or obpyriform with a smooth surface, brown or dark brown, with 0 to 2 septa and 5.5 to 14.8 × 2.5 to 4.0 μm. The pathogen was consistent morphologically with Cladosporium oxysporum (1). To identify the pathogen, leaf pieces (3 to 5 mm2) taken from the edge of lesions so that each leaf section included both infected and healthy leaf tissue, were surface-disinfested in 75% ethanol for 30 s, then transferred to a 0.1% aqueous mercuric chloride solution for 30 to 60 s, and rinsed with sterilized water three times. The sections were cultured on potato dextrose agar (PDA) at 25°C in the dark for 7 days. Three pure cultures were obtained from single spores. The conidia on PDA were oval or obpyriform, and 5.4 to 14.7 × 2.4 to 4.2 μm with 0 to 1 septa, and were smaller than the conidia examined directly from infected eggplant leaves. Two isolates were grown on synthetic nutrient agar (SNA) in slide cultures. The conidiophores on SNA were straight or slightly flexuous with swellings at the junctions of septa. On the grounds of these morphological characteristics, the pathogen was identified as C. oxysporum (1,3). For DNA extraction, cultures were grown in potato dextrose broth and the internal transcribed spacer (ITS) region of ribosomal DNA (rNDA) was amplified using primers ITS1 and ITS4 (2). Sequence analysis showed that the ITS sequences of the two isolates were 99% identical to that of C. oxysporum (GenBank Accession No. EF029816). Two isolates were tested for pathogenicity on eggplant using 1 × 107 conidia/ml in sterilized water atomized onto each of six 7-week-old plants of the cultivar Xi'an Green Eggplant. Sterilized water was applied similarly to another six plants as the control treatment. The plants were incubated at 25°C with 85% relative humidity for 8 to 10 days. After 10 days, light brown, irregular spots were found on inoculated leaves, whereas no symptoms were observed on control plants. The pathogen was re-isolated from lesions on inoculated plants but not from control plants. The re-isolates were confirmed to be C. oxysporum based on morphological characteristics. The pathogenicity test was repeated and the same results obtained. Therefore, the pathogen causing leaf spot on eggplant in these greenhouses was identified as C. oxysporum. This is the first report of C. oxysporum causing leaf spot on greenhouse eggplant in China. C. oxysporum is a known pathogen of pepper and tomato. Additional studies are needed to provide management recommendations for this pathogen on Solanaceae crops. References: (1) K. Bensch et al. Stud. Mycol. 67:1, 2010. (2) Q. Li and G. Wang. Microbiol. Res. 164:233, 2009. (3) W. T. H. Peregrine and K. B. Ahmad. Phytopathol. Pap. 27:1, 1982.


Plant Disease ◽  
2021 ◽  
Author(s):  
Hafiz Muhammad Usman Aslam ◽  
Nasir Ahmad Khan ◽  
Syed Ismat Hussain ◽  
Yasir Ali ◽  
Muhammad Raheel ◽  
...  

Brown leaf spot of rice is one of the major seed-borne diseases and can diminish grain production up to 52% (Barnwal et al. 2013). In 2018, infected leaf samples showing the typical symptoms of brown spots were collected from the vicinity of the University of Agriculture, Faisalabad (31°26'10.3"N 73°03'35.1"E). The symptoms were brown-dark spots, with gray-light gray or brown centers surrounded by dark margins and with chlorotic halos and of oval or cylindrical shapes (5 to 9 mm in diameter). Disease incidence averaged 61% across the seven fields observed. Leaves were collected from the seven infected fields and symptomatic leaf tissues of 5 mm2 were excised from representative necrotic spots in each. These tissues were surface disinfected with 70% ethanol, rinsed with sterile distilled water (SDW), dried by blotting on paper, and placed on potato dextrose agar medium. For pathogen growth, the plates were placed at 25oC (±2oC) with a 12-hour photoperiod for 5 days. Five samples from each of the infected fields were taken for pathogen isolation and among them ten isolates were sub-cultured and purified by using the single spore method. The resulting fungal colonies were fluffy and ranged in color from grayish black/black to light brown. Fifteen conidia were measured that are olivaceous-brown to dark brown in color, elliptical to oblong with narrow (tapered) ends, with 3-10 septa and 35.6-65.4 µm in length x 13.1-25.7 µm in width. Conidiophores were yellowish-brown, geniculate, and solitary (Pratt 2003). For molecular studies, rDNA of the internal transcribed spacer (ITS) region, translation elongation factor (tef), RNA polymerase II second largest subunit (rpb2) and glyceraldehyde-3-phosphate dehydrogenase (gpd) gene were amplified by using the primers ITS1F/ITS4R (White et al. 1990), EF1-983F/EF1-2218R (Rehner and Buckley 2005), 5F2/7CR (O’Donnell et al. 2007), and GPD1/GPD2 (Berbee et al. 1999) respectively. The sequence of all the amplified gene regions of one SUL-1 isolate was deposited into GenBank with accession numbers MN314844 (ITS), MN326866 (tef), MN990457 (rpb2) and MN990456 (gpd). BLASTn queries of the obtained sequences (ITS, tef, rpb2 and gpd) showed 99-100% homology with the corresponding nucleotide sequences of B. sorokiniana (GenBank accession nos. GU480767, MF490855, LT715652 and MK558818 respectively). To fulfill the Koch’s postulates, twenty rice plants (cv. Basmati-385) were sprayed at 2 to 3 leaf stages by using the two representative isolates with a spore suspension of 105 spores/ml. SDW was sprayed on ten control plants. The plants were covered with polyethylene bags to keep the moisture contents and incubated at 25oC (±2oC) for 7 days. After a week, same symptoms as those described above were observed. In the repeated experiment, B. sorokiniana was re-isolated from the infected rice leaves and confirmed morphologically; fulfill the Koch’s postulates. With grave worry, the other species of the genus Bipolaris (B. oryzae, and B. victoriae) have also been found to the cause brown leaf spot of rice (Motlagh and Kaviani 2008). To our knowledge, this is the first report of Bipolaris sorokiniana causing brown leaf spot of rice in Pakistan. Because rice is highly consumable grain in Pakistan, so the rapid spread of this disease in the rice farming areas is of a serious concern.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jiangui Zhang ◽  
Xiumei Nie ◽  
Guiqin Zhao

Oat (Avena sativa) is an annual gramineous crop, which contains a source of soluble dietary fiber, β-glucan, unsaturated fatty acids, vitamins, minerals, phenolic acids and avenanthramides. It widely cultivated in cool and semi-arid areas in northern China (Li et al, 2017). In July 2018, a severe leaf spot infection was observed in the Forage Germplasm Nursery (31°17′22″N, 103°40′15″E, 2885 m elevation) in Tianzhu County, Wuwei City of Gansu Province in China. Disease incidence (total number of diseased leaves / total number of surveyed leaves X 100%) was 93% over 300 m2 planting area. Symptoms initially appeared as small circular to irregular, gray-green, water-soaked spots on the leaves in the middle or along the margin of leaves, that enlarged and coalesced. The center of the leaf spots turned brown to reddish-brown. Infected tissues from symptomatic leaves were cut into small pieces (5×5 mm), surface sterilized with 70% ethanol for 60 s, soaked in 5% commercial bleach (~0.275% NaClO) for 5 min (Xue et al, 2018), rinsed five times with distilled water, plated on potato dextrose agar (PDA) medium, and incubated for 3 days in the dark at 25°C (Zhang, 2003; Blagojević et al, 2020; Humpherson et al, 1989). Hyphae emerging from the tissue were subcultured on fresh PDA medium for purification. All colonies were light brown with intensive sporulation in rings that was grayish white, and later became grayish brown. The back of the colony was dark brown. Conidiophores were light brown, unbranched, grew vertically on hyphae, and each conidiophore produced 3 to 7 conidia (mostly 6). Conidia were light brown, septate, straight to slightly curved, single or in chains, oval or obclavate, measured 17 to 32 µm wide and 63 to 106 µm long with the conical beak cell, 7 to 12 transverse septa, 0 to 5 longitudinal septa. These morphological characteristics were similar to the descriptions of Alternaria spp. (Simmons, 2008). A single isolate, YMZZ1, was selected for molecular identification. The ITS region of rDNA, partial GAPDH and Tef1-α gene sequences were amplified by PCR with the primer pairs of ITS1/ITS4, gpd1/gpd2 and EF1-728F/EF1-986R, respectively (Woudenberg et al, 2013). Sequences were deposited in GeneBank under accessions MN446739 (ITS), MN481462 (GAPDH), and MN464104 (Tef1-α). A nucleotide BLAST search revealed ITS, GAPDH and Tef1-α sequences to be 99% similar to accessions numbers MN856410 (565/573 bp), MK026431 (575/575 bp), and MH754531 (211/211 bp), respectively) of A. brassicae. Neighbor-joining (NJ) and Maximum Likelihood (ML) phylogenetic analysis were conducted based on ITS, GAPDH and TEF-1α sequences using MEGA7.0 under Kimura 2-parameter model. The isolate YMZZ1 clustered with a representative strain A. brassicae LGBA22 with 100% bootstrap support. To test its pathogenicity, six healthy 3 week old plants were spray-inoculated with a suspension of 3×105 conidia/mL of YMZZ1. The same number of plants were sprayed with sterilized water as control. All plants were covered with transparent plastic bags for 48 h to maintain high relative humidity and incubated in a 25°C growth chamber (16/8 h light/dark) for observation. Ten days after inoculation, leaf spot symptoms were observed on leaves similar to those previously observed in nursery; no symptoms were observed on the control. The pathogenicity test was repeated twice under the same conditions and A. brassicae was re-isolated from inoculated plants each time fulfilling Koch’s postulates. A. brassicae has not been previously reported as a pathogen of A. sativa in the world, but has been mentioned as a pathogen of horse radish (Armoracia rusticana) in Serbia (Blagojevic et al, 2015). To our knowledge, this is the first report of leaf spot caused by A. brassicae on A. sativa in China. This study stresses an urgent need to identify appropriate management strategies of A. brassicae that help in preventing losses in quality and yield of oats in northern China.


Sign in / Sign up

Export Citation Format

Share Document